Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Metzl is active.

Publication


Featured researches published by Nicolas Metzl.


Deep-sea Research Part Ii-topical Studies in Oceanography | 2002

Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects

Taro Takahashi; Stewart C. Sutherland; Colm Sweeney; Alain Poisson; Nicolas Metzl; Bronte Tilbrook; Nicholas R. Bates; Rik Wanninkhof; Richard A. Feely; Christopher L. Sabine; Jón S. Ólafsson; Yukihiro Nojiri

Based on about 940,000 measurements of surface-water pCO2 obtained since the International Geophysical Year of 1956–59, the climatological, monthly distribution of pCO2 in the global surface waters representing mean non-El Nino conditions has been obtained with a spatial resolution of 4°×5° for a reference year 1995. The monthly and annual net sea–air CO2 flux has been computed using the NCEP/NCAR 41-year mean monthly wind speeds. An annual net uptake flux of CO2 by the global oceans has been estimated to be 2.2 (+22% or ?19%) Pg C yr?1 using the (wind speed)2 dependence of the CO2 gas transfer velocity of Wanninkhof (J. Geophys. Res. 97 (1992) 7373). The errors associated with the wind-speed variation have been estimated using one standard deviation (about±2 m s?1) from the mean monthly wind speed observed over each 4°×5° pixel area of the global oceans. The new global uptake flux obtained with the Wanninkhof (wind speed)2 dependence is compared with those obtained previously using a smaller number of measurements, about 250,000 and 550,000, respectively, and are found to be consistent within±0.2 Pg C yr?1. This estimate for the global ocean uptake flux is consistent with the values of 2.0±0.6 Pg C yr?1 estimated on the basis of the observed changes in the atmospheric CO2 and oxygen concentrations during the 1990s (Nature 381 (1996) 218; Science 287 (2000) 2467). However, if the (wind speed)3 dependence of Wanninkhof and McGillis (Res. Lett. 26 (1999) 1889) is used instead, the annual ocean uptake as well as the sensitivity to wind-speed variability is increased by about 70%. A zone between 40° and 60° latitudes in both the northern and southern hemispheres is found to be a major sink for atmospheric CO2. In these areas, poleward-flowing warm waters meet and mix with the cold subpolar waters rich in nutrients. The pCO2 in the surface water is decreased by the cooling effect on warm waters and by the biological drawdown of pCO2 in subpolar waters. High wind speeds over these low pCO2 waters increase the CO2 uptake rate by the ocean waters. The pCO2 in surface waters of the global oceans varies seasonally over a wide range of about 60% above and below the current atmospheric pCO2 level of about 360 ?atm. A global map showing the seasonal amplitude of surface-water pCO2 is presented. The effect of biological utilization of CO2 is differentiated from that of seasonal temperature changes using seasonal temperature data. The seasonal amplitude of surface-water pCO2 in high-latitude waters located poleward of about 40° latitude and in the equatorial zone is dominated by the biology effect, whereas that in the temperate gyre regions is dominated by the temperature effect. These effects are about 6 months out of phase. Accordingly, along the boundaries between these two regimes, they tend to cancel each other, forming a zone of small pCO2 amplitude. In the oligotrophic waters of the northern and southern temperate gyres, the biology effect is about 35 ?atm on average. This is consistent with the biological export flux estimated by Laws et al. (Glob. Biogeochem. Cycles 14 (2000) 1231). Small areas such as the northwestern Arabian Sea and the eastern equatorial Pacific, where seasonal upwelling occurs, exhibit intense seasonal changes in pCO2 due to the biological drawdown of CO2.


Science | 2007

Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change

Corinne Le Quéré; Christian Rödenbeck; Erik T. Buitenhuis; T. J. Conway; R. L. Langenfelds; Antony Gomez; Casper Labuschagne; Michel Ramonet; Takakiyo Nakazawa; Nicolas Metzl; Nathan P. Gillett; Martin Heimann

Based on observed atmospheric carbon dioxide (CO2) concentration and an inverse method, we estimate that the Southern Ocean sink of CO2 has weakened between 1981 and 2004 by 0.08 petagrams of carbon per year per decade relative to the trend expected from the large increase in atmospheric CO2. We attribute this weakening to the observed increase in Southern Ocean winds resulting from human activities, which is projected to continue in the future. Consequences include a reduction of the efficiency of the Southern Ocean sink of CO2 in the short term (about 25 years) and possibly a higher level of stabilization of atmospheric CO2 on a multicentury time scale.


Journal of Geophysical Research | 1993

Variability of sources and sinks of CO2 in the western Indian and southern oceans during the year 1991

Alain Poisson; Nicolas Metzl; Christian Brunet; Bernard Schauer; Bernard Brès; Diana Ruiz-Pino; Ferial Louanchi

For the period from January to September 1991 we describe spatial and temporal variations of sea surface carbon dioxide fugacity (fCO2) in the Antarctic, Subantarctic, subtropical, and tropical regions of the Indian Ocean (including the Red Sea). The measurements were made continuously with an infrared technique during seven cruises. We study the temporal variations of fCO2 at daily, monthly and seasonal scales in selected areas. High-frequency variabilities of 20 μatm/d have been observed near polar frontal zone. Both spatial and temporal fCO2 variations are large near the subtropical and Subantartic fronts. In the subtropical domain, fCO2 decreases regularly from austral summer to winter. In January this region is a small CO2 sink with values near equilibrium with the atmosphere. In July, low fCO2 (300 μatm) leads to a CO2 flux of −4.5 mmol/m2/d into the ocean for the zonal band 23°S-35°S. A quantitative study of monthly and seasonal fCO2 budgets is presented for the subtropical area. Considering first the observations at seasonal scale, it is shown that changes in fCO2 can be explained by temperature variations and air-sea exchanges; the sum of biological and mixing processes, considered as the balance of the seasonal fCO2 budget, is close to zero. The monthly fCO2 budgets are then calculated. In that case, other processes must be taken into account to close the budget: the observations indicate that the effect of productivity exceeds the one of mixing in austral summer and the opposite in winter. We then describe the seasonal air-sea fCO2 differences (ΔfCO2) for the whole western Indian Ocean and corresponding Antarctic sector (18,000 observations). In the equatorial and tropical regions the ocean is a CO2 source as was previously observed in the 1960s. In the subtropical area the CO2 sink dominates but varies strongly on a monthly scale. In the circumpolar front zones there is a large potential CO2 sink in summer. In the Antarctic waters, fCO2 spatial variability is very high at mesoscale, especially in the area of the Kerguelen plateau. Finally, it is shown that in some oceanic areas, well-defined relations exist between fCO2 distribution and temperature and salinity. If we want to use them to constrain mappings of continuous fCO2 fields from sparse observations, such relations must be considered at regional and at least seasonal scales.


Science | 2015

The reinvigoration of the Southern Ocean carbon sink

Peter Landschützer; Nicolas Gruber; F. Alexander Haumann; Christian Rödenbeck; Dorothee C. E. Bakker; Steven van Heuven; Mario Hoppema; Nicolas Metzl; Colm Sweeney; Taro Takahashi; Bronte Tilbrook; Rik Wanninkhof

Uptake uptick Has global warming slowed the uptake of atmospheric CO2 by the Southern Ocean? Landschützer et al. say no (see the Perspective by Fletcher). Previous work suggested that the strength of the Southern Ocean carbon sink fell during the 1990s. This raised concerns that such a decline would exacerbate the rise of atmospheric CO2 and thereby increase global surface air temperatures and ocean acidity. The newer data show that the Southern Ocean carbon sink strengthened again over the past decade, which illustrates the dynamic nature of the process and alleviates some of the anxiety about its earlier weakening trend. Science, this issue p. 1221; see also p. 1165 Carbon uptake by the Southern Ocean has increased again after its slowdown in the 1990s. [Also see Perspective by Fletcher] Several studies have suggested that the carbon sink in the Southern Ocean—the ocean’s strongest region for the uptake of anthropogenic CO2 —has weakened in recent decades. We demonstrated, on the basis of multidecadal analyses of surface ocean CO2 observations, that this weakening trend stopped around 2002, and by 2012, the Southern Ocean had regained its expected strength based on the growth of atmospheric CO2. All three Southern Ocean sectors have contributed to this reinvigoration of the carbon sink, yet differences in the processes between sectors exist, related to a tendency toward a zonally more asymmetric atmospheric circulation. The large decadal variations in the Southern Ocean carbon sink suggest a rather dynamic ocean carbon cycle that varies more in time than previously recognized.


Science | 2009

Tracking the variable North Atlantic sink for atmospheric CO2

Andrew J. Watson; Ute Schuster; Dorothee C. E. Bakker; Nicholas R. Bates; Antoine Corbière; Melchor González-Dávila; Tobias Friedrich; Judith Hauck; Christoph Heinze; Truls Johannessen; Arne Körtzinger; Nicolas Metzl; Jón S. Ólafsson; Are Olsen; Andreas Oschlies; X. Antonio Padin; Benjamin Pfeil; J. Magdalena Santana-Casiano; Tobias Steinhoff; M. Telszewski; Aida F. Ríos; Douglas W.R. Wallace; Rik Wanninkhof

A Happy Marriage The fluxes of CO2 between the atmosphere and ocean are large and variable, and understanding why the concentration of atmospheric CO2 changes as it does, depends on accurately determining the details of those fluxes. One of the major obstacles in the way of quantifying this exchange is that there are too few measurements available, both temporally and geographically. Watson et al. (p. 1391) report results from a happy marriage of science and commerce—data collected by instruments fitted onto commercial ships plying the waters of the North Atlantic Ocean—that has generated the largest and most comprehensive set of measurements of ocean pCO2 ever collected. These data allow the oceanic CO2 sink to be monitored with unprecedented accuracy and will help researchers precisely map regional interannual air-sea fluxes. Data from instrumented commercial ships reveal substantial interannual variations of carbon dioxide flux between the ocean and the air. The oceans are a major sink for atmospheric carbon dioxide (CO2). Historically, observations have been too sparse to allow accurate tracking of changes in rates of CO2 uptake over ocean basins, so little is known about how these vary. Here, we show observations indicating substantial variability in the CO2 uptake by the North Atlantic on time scales of a few years. Further, we use measurements from a coordinated network of instrumented commercial ships to define the annual flux into the North Atlantic, for the year 2005, to a precision of about 10%. This approach offers the prospect of accurately monitoring the changing ocean CO2 sink for those ocean basins that are well covered by shipping routes.


Global Biogeochemical Cycles | 2012

The observed evolution of oceanic pCO2 and its drivers over the last two decades

Andrew Lenton; Nicolas Metzl; Taro Takahashi; Mareva Kuchinke; Richard Matear; Tilla Roy; Stewart C. Sutherland; Colm Sweeney; Bronte Tilbrook

[1] We use a database of more than 4.4 million observations of ocean pCO2 to investigate oceanic pCO2 growth rates. We use pCO2 measurements, with corresponding sea surface temperature and salinity measurements, to reconstruct alkalinity and dissolved inorganic carbon to understand what is driving these growth rates in different ocean regions. If the oceanic pCO2 growth rate is faster (slower) than the atmospheric CO2 growth rate, the region can be interpreted as having a decreasing (increasing) atmospheric CO2 uptake. Only the Western subpolar and subtropical North Pacific, and the Southern Ocean are found to have sufficient spatial and temporal observations to calculate the growth rates of oceanic pCO2 in different seasons. Based on these regions, we find the strength of the ocean carbon sink has declined over the last two decades due to a combination of regional drivers (physical and biological). In the subpolar North Pacific reduced atmospheric CO2 uptake in the summer is associated with changes in the biological production, while in the subtropical North Pacific enhanced uptake in winter is associated with enhanced biological production. In the Indian and Pacific sectors of the Southern Ocean a reduced winter atmospheric CO2 uptake is associated with a positive SAM response. Conversely in the more stratified Atlantic Ocean sector enhanced summer uptake is associated with increased biological production and reduced vertical supply. We are not able to separate climate variability and change as the calculated growth rates are at the limit of detection and are associated with large uncertainties. Ongoing sustained observations of global oceanic pCO2 and its drivers, including dissolved inorganic carbon and alkalinity, are key to detecting and understanding how the ocean carbon sink will evolve in future and what processes are driving this change.


Tellus B | 2007

Interannual and decadal variability of the oceanic carbon sink in the North Atlantic subpolar gyre

Antoine Corbière; Nicolas Metzl; Gilles Reverdin; Christian Brunet; Taro Takahashi

The evaluation of interannual and decadal variations of air-sea CO2 fluxes represents important step for understanding the changes in the global carbon cycle. In this study we analyse the variations of sea surface dissolved inorganic carbon (DIC) and total alkalinity (TA) in the North Atlantic over the period 1993.2003 (SURATLANT Program). The analysis focuses on the subpolar gyre (53°.N-62°.N/45.W-20°.W). Large interannual variability of DIC and air-sea CO2 fluxes is observed mostly during summer. In the extreme case, this region was a CO2 source in 2003 explained by a dramatic warming and the absence of late-summer bloom. At the decadal scale, DIC and TA concentrations appeared stable indicating a complex balance between primary production, vertical mixing, horizontal transport and anthropogenic CO2.We also found that winter fCO2 has increased at a rate of +2.8 μatm yr-1 between 1993 and 2003, due to strong surface warming (1.5.°C over 10 yr) particularly since winter 1995 when the North Atlantic Oscillation index moved into a negative phase. This resulted in a decrease of carbon uptake in the North Atlantic subpolar gyre, a trend also suggested for the period 1972.1989 but not captured by current class atmospheric inverse models.


Geophysical Research Letters | 2009

Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification

Andrew Lenton; Francis Codron; Laurent Bopp; Nicolas Metzl; P. Cadule; Alessandro Tagliabue; Julien Le Sommer

Observational and atmospheric inversion studies find that the strength of the Southern Ocean carbon dioxide (CO2) sink is not increasing, despite rising atmospheric CO2. However, this is yet to be captured by contemporary coupled-climate-carbon-models used to predict future climate. We show that by accounting for stratospheric ozone depletion in a coupled-climate-carbon-model, the ventilation of carbon rich deep water is enhanced through stronger winds, increasing surface water CO2 at a rate in good agreement with observed trends. We find that Southern Ocean uptake is reduced by 2.47 PgC (1987-2004) and is consistent with atmospheric inversion studies. The enhanced ventilation also accelerates ocean acidification, despite lesser Southern Ocean CO2 uptake. Our results link two important anthropogenic changes: stratospheric ozone depletion and greenhouse gas increases; and suggest that studies of future climate that neglect stratospheric ozone depletion likely overestimate regional and global oceanic CO2 uptake and underestimate the impact of ocean acidification.


Marine Chemistry | 1991

Surface water carbon dioxide in the southwest Indian sector of the Southern Ocean: a highly variable CO2 source/sink region in summer

Nicolas Metzl; C. Beauverger; Christian Brunet; Catherine Goyet; Alain Poisson

Abstract Measurements of partial pressure of carbon dioxide (pCO2), total dissolved inorganic carbon (TCO2), total alkalinity (TA) and chlorophyll a (Chl a) have been made in surface water in the southwestern Indian sector of the Southern Ocean (20–85°E) in the austral summer (INDIVAT V cruise, January-February 1987). Between Antarctica and Africa, pCO2 distribution was linked to the oceanic frontal zones and Chi a variations. The pCO2 spatial structure was very close to that explored in summer 1967 in the same region but the pCO2 differences between the ocean and the atmosphere were smaller in 1987 than 20 years ago. At all latitudes we found strongly contrasting surface pCO2 characteristics between eastern (around 80°E) and western (around 25°E) regions; C02 sources were mainly in the west and CO2 sinks in the east. South of 60°S, the contrast could be due to biological activity. Between 60°S and the Antarctic Polar Front, intensification of upwelling might be responsible for the higher pCO2 values in the west.


Marine Chemistry | 1996

Modelling the monthly sea surface fCO2 fields in the Indian Ocean

Ferial Louanchi; Nicolas Metzl; Alain Poisson

In order to construct monthly fields of sea surface fugacity of carbon dioxide (fCO2) on a large scale in the Indian Ocean, we use a one-dimensional model which takes into account the main physical and biogeochemical processes controlling fCO2 variations in the ocean. Physical and biogeochemical processes are constrained by the monthly variations of sea surface temperature, salinity, chlorophyll concentration, wind speed and mixed-layer depth. The model is applied to four locations in the Indian Ocean and it well predicts observed temporal variations in fCO2 at these locations. Regarding to monthly fCO2 observations, the model also well simulates the fCO2 distribution and its temporal variations along a track located between 20 ° and 50 °S with a maximal error of + 10 μatm. The model is also used to predict fCO2 for 2 ° × 2 ° grids over the entire Indian Ocean and simulates seasonal cycles that are consistent with observations. The monthly fCO2 fields derived from the model are used to estimate a global air-sea CO2 flux over the Indian Ocean basin. We estimate a net sink of 0.5 Gtyr C for the Indian Ocean (20 °N-50 °S), with the main sink located between 20 ° and 50 °S.

Collaboration


Dive into the Nicolas Metzl's collaboration.

Top Co-Authors

Avatar

Pascal Morin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriel Gorsky

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Mustapha Ouhssain

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Sarah Searson

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge