Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Meunier is active.

Publication


Featured researches published by Nicolas Meunier.


The Journal of Neuroscience | 2014

Postnatal Odorant Exposure Induces Peripheral Olfactory Plasticity at the Cellular Level

Hervé Cadiou; Imad Aoude; Bassim Tazir; Adrien Molinas; Claire Forbes Fenech; Nicolas Meunier; Xavier Grosmaitre

Mammalian olfactory sensory neurons (OSNs) form the primary elements of the olfactory system. Inserted in the olfactory mucosa lining of the nasal cavity, they are exposed to the environment and their lifespan is brief. Several reports say that OSNs are regularly regenerated during the entire life and that odorant environment affects the olfactory epithelium. However, little is known about the impact of the odorant environment on OSNs at the cellular level and more precisely in the context of early postnatal olfactory exposure. Here we exposed MOR23-green fluorescent protein (GFP) and M71-GFP mice to lyral or acetophenone, ligands for MOR23 or M71, respectively. Daily postnatal exposure to lyral induces plasticity in the population of OSNs expressing MOR23. Their density decreases after odorant exposure, whereas the amount of MOR23 mRNA and protein remain stable in the whole epithelium. Meanwhile, quantitative PCR indicates that each MOR23 neuron has higher levels of olfactory receptor transcripts and also expresses more CNGA2 and phosphodiesterase 1C, fundamental olfactory transduction pathway proteins. Transcript levels return to baseline after 4 weeks recovery. Patch-clamp recordings reveal that exposed MOR23 neurons respond to lyral with higher sensitivity and broader dynamic range while the responses kinetics were faster. These effects are specific to the odorant–receptor pair lyral–MOR23: there was no effect of acetophenone on MOR23 neurons and no effect of acetophenone and lyral on the M71 population. Together, our results clearly demonstrate that OSNs undergo specific anatomical, molecular, and functional adaptation when chronically exposed to odorants in the early stage of life.


Neuroscience | 2011

Endothelin as a neuroprotective factor in the olfactory epithelium.

I. Laziz; A. Larbi; Denise Grebert; M. Sautel; Patrice Congar; M.C. Lacroix; Roland Salesse; Nicolas Meunier

In mammals, the olfactory sensory neurons are the only ones directly in contact with an aggressive environment. Thus, the olfactory mucosa is one of the few neuronal zones which are continuously renewed during adulthood. We have previously shown that endothelin is locally matured in the olfactory mucosa and that olfactory sensory neurons preferentially express ETB receptors, while ETA receptors are rather present in non neuronal olfactory mucosa cells. In addition to its vasoactive effect, the endothelin system is known for its pleiotropic effects including the modulation of cell population dynamics. We thus examined its potential neuroprotective effect in the olfactory mucosa using a primary culture of olfactory sensory neurons lying on non neuronal cells. While a serum deprivation led to a massive decrease of the density of olfactory sensory neurons in the primary cultures, endothelin 1 (ET-1) rescued part of the neuronal population through both ETA and ETB receptors. This effect was mainly anti-apoptotic as it reduced cleaved caspase-3 signal and nuclear condensation. Furthermore, the olfactory epithelium of ETB-deficient rats displayed increased apoptosis. These results strongly suggest that ET-1 acts as an anti-apoptotic factor on olfactory sensory neurons, directly through ETB and indirectly by limiting non neuronal cells death through ETA.


PLOS ONE | 2012

Neuropeptide Y Enhances Olfactory Mucosa Responses to Odorant in Hungry Rats

Julia Negroni; Nicolas Meunier; Régine Monnerie; Roland Salesse; Christine Baly; Monique Caillol; Patrice Congar

Neuropeptide Y (NPY) plays an important role in regulating appetite and hunger in vertebrates. In the hypothalamus, NPY stimulates food intake under the control of the nutritional status. Previous studies have shown the presence of NPY and receptors in rodent olfactory system, and suggested a neuroproliferative role. Interestingly, NPY was also shown to directly modulate olfactory responses evoked by a food-related odorant in hungry axolotls. We have recently demonstrated that another nutritional cue, insulin, modulates the odorant responses of the rat olfactory mucosa (OM). Therefore, the aim of the present study was to investigate the potential effect of NPY on rat OM responses to odorants, in relation to the animals nutritional state. We measured the potential NPY modulation of OM responses to odorant, using electro-olfactogram (EOG) recordings, in fed and fasted adult rats. NPY application significantly and transiently increased EOG amplitudes in fasted but not in fed rats. The effects of specific NPY-receptor agonists were similarly quantified, showing that NPY operated mainly through Y1 receptors. These receptors appeared as heterogeneously expressed by olfactory neurons in the OM, and western blot analysis showed that they were overexpressed in fasted rats. These data provide the first evidence that NPY modulates the initial events of odorant detection in the rat OM. Because this modulation depends on the nutritional status of the animal, and is ascribed to NPY, the most potent orexigenic peptide in the central nervous system, it evidences a strong supplementary physiological link between olfaction and nutritional processes.


Chemical Senses | 2009

Water Taste Transduction Pathway Is Calcium Dependent in Drosophila

Nicolas Meunier; Frédéric Marion-Poll; Philippe Lucas

In mammals, detection of osmolarity by the gustatory system was overlooked until recently. In insects, specific taste receptor neurons detect hypoosmotic stimuli and are commonly called W (water) cells. W cells are easy to access in vivo and represent a good model to study the transduction of hypoosmotic stimuli. Using pharmacological and genetic approaches in Drosophila, we show that tarsal W cell firing activity depends on the concentration of external calcium bathing the dendrite. This dependence was confirmed by the strong inhibition of W cell responses to hypoosmotic stimuli by lanthanum (IC(50) = 8 nM), an ion known to inhibit calcium-permeable channels. Downstream, the transduction pathway likely involves calmodulin because calmodulin antagonists such as W-7 (IC(50) = 2 microM) and fluphenazine (IC(50) = 30 microM) prevented the activation of the W cell by hypoosmotic stimuli. A protein kinase C (PKC) may also be involved as W cell responses were blocked by PKC inhibitors, chelerythrine (IC(50) = 20 microM) and staurosporine (IC(50) = 30 microM). It was also reduced when expressing an inhibitory pseudosubstrate of PKC in gustatory receptor neurons. In the rat, the transduction pathway underlying low osmolarity detection involves aquaporin and swelling-activated ion channels. Our study suggests that the transduction pathway of hypoosmotic stimuli in insects differs from mammals.


Neuroscience | 2010

ENDOTHELIN EVOKES DISTINCT CALCIUM TRANSIENTS IN NEURONAL AND NON-NEURONAL CELLS OF RAT OLFACTORY MUCOSA PRIMARY CULTURES

E. Gouadon; Nicolas Meunier; D. Grebert; D. Durieux; C. Baly; Roland Salesse; M. Caillol; P. Congar

The olfactory system is regulated by several nervous and hormonal factors, and there is a growing body of evidence that some of these modulations already take place in the olfactory mucosa (OM). We recently suggested that, among others, vasoactive peptides might play multifaceted roles in different OM cells. Here we studied the effect of the vasoconstrictive peptide endothelin (ET) in the rat OM. We identified different components of the ET system both in the olfactory mucosa and in long-term primary culture of OM cells, composed of olfactory sensory neurons (OSNs) lying on a blend of non-neuronal OM cells (nNCs). We demonstrated that ET receptors are differentially expressed on OM cells, and that ET might be locally matured by the endothelin-converting enzyme ECE-1 located in OSNs. Using calcium imaging, we showed that ET triggers robust dose-dependent Ca(2+) responses in most OM cells, which consist of a transient phase, followed, in nNCs, by a sustained plateau phase. All transient responses depended on intracellular calcium release, while the sustained plateau phase also depended on subsequent external calcium entry. Using both pharmacology and spotting lethal (sl/sl) mutant rats, lacking functional ET(B) receptors, we finally demonstrated that these effects of ET are mediated through ET(B) receptors in OSNs and ET(A) receptors in nNCs.The present study therefore identifies endothelin as a potent endogenous modulator of the olfactory mucosa; specific endothelin-mediated Ca(2+) signals may serve distinct signaling functions, and thereby suggest differential functional roles of endothelin in both neuronal and non-neuronal OM cells.


Frontiers in Cellular Neuroscience | 2013

Early survival factor deprivation in the olfactory epithelium enhances activity-driven survival

Adrien François; Iman Laziz; Stéphanie Rimbaud; Denise Grebert; Didier Durieux; Edith Pajot-Augy; Nicolas Meunier

The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs). However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226). We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population toward detection of environmental odorants.


Journal of Neuroendocrinology | 2011

Insulin but not leptin protects olfactory mucosa from apoptosis.

M.-C. Lacroix; A. Rodriguez-Enfedaque; Denise Grebert; I. Laziz; Nicolas Meunier; Régine Monnerie; M.-A. Persuy; S. Riviere; Monique Caillol; F. Renaud

The mammalian olfactory mucosa (OM) is continually renewed throughout life. Owing to their position in the nasal cavity, OM cells are exposed to multiple insults, including high levels of odourants that can induce their death. OM regeneration is therefore essential to maintain olfactory function, and requires the tight control of both cell death and proliferation. Apoptosis has been implicated in OM cell death. Olfaction is one of the senses involved in food intake and depends on individual nutritional status. We have previously reported the influence of hormones related to nutritional status on odour perception and have shown that the OM is a target of insulin and leptin, two hormones known for their anti‐apoptotic properties. In the present study, we investigated the potential anti‐apoptotic effect of these metabolic hormones on OM cells. Both Odora cells (an olfactive cell line) and OM cells treated with etoposide, a p53 activity inducer, exhibited mitochondrial‐dependent apoptosis that was inhibited by the pan‐caspase inhibitor zVAD‐fmk. Insulin, but not leptin, impaired this apoptotic effect. Insulin addition to the culture medium reduced p53 phosphorylation, caspase‐3 and caspase‐9 cleavage, and caspase‐3 enzymatic activity induced by etoposide. The apoptotic wave observed in the OM after interruption of the neuronal connections between the OM and the olfactory bulb by bulbectomy was impaired by intranasal insulin treatment. These findings suggest that insulin may be involved in OM cellular dynamics, through endocrine and/or paracrine‐autocrine effects of circulating or local insulin, respectively.


Frontiers in Neuroscience | 2015

Behavioral responses to odors from other species: introducing a complementary model of allelochemics involving vertebrates

Birte L. Nielsen; Olivier Rampin; Nicolas Meunier; Vincent Bombail

It has long been known that the behavior of an animal can be affected by odors from another species. Such interspecific effects of odorous compounds (allelochemics) are usually characterized according to who benefits (emitter, receiver, or both) and the odors categorized accordingly (allomones, kairomones, and synomones, respectively), which has its origin in the definition of pheromones, i.e., intraspecific communication via volatile compounds. When considering vertebrates, however, interspecific odor-based effects exist which do not fit well in this paradigm. Three aspects in particular do not encompass all interspecific semiochemical effects: one relates to the innateness of the behavioral response, another to the origin of the odor, and the third to the intent of the message. In this review we focus on vertebrates, and present examples of behavioral responses of animals to odors from other species with specific reference to these three aspects. Searching for a more useful classification of allelochemical effects we examine the relationship between the valence of odors (attractive through to aversive), and the relative contributions of learned and unconditioned (innate) behavioral responses to odors from other species. We propose that these two factors (odor valence and learning) may offer an alternative way to describe the nature of interspecific olfactory effects involving vertebrates compared to the current focus on who benefits.


Behavioural Brain Research | 2015

Chronic variable stress exposure in male Wistar rats affects the first step of olfactory detection.

Aurélien Raynaud; Nicolas Meunier; Adrien Acquistapace; Vincent Bombail

For most animal species, olfaction plays a paramount role in their perception of the environment. Odours are initially detected in neurons located in the olfactory mucosa. This tissue is regulated by several physiological signals and can be altered in pathology. A number of clinical studies suggest an association between depressive disorders and olfactory sensory loss. In rodents, depressive-like states can be observed in models of chronic stress. We tested the hypothesis that olfactory function might be altered in a rat model of depression, induced by chronic variable stress (CVS). While CVS rats exhibited several symptoms consistent with chronic stress exposure and depressive-like states (increased sucrose intake in sucrose preference test, increased immobility in forced swim test, hyperlocomotion), their odorant responses recorded at the olfactory mucosa level by electro-olfactogram were decreased. In addition we observed increased apoptosis markers in the olfactory mucosa using Western Blot. Our data are consistent with reduced olfactory capacities in a laboratory rat model of chronic stress and depression, in agreement with human clinical data; this warrants further mechanistic studies. Furthermore, this works raises the possibility that altered olfactory function might be a confounding factor in the behavioural testing of chronically stressed or depressed rats.


Scientific Reports | 2016

Olfactory epithelium changes in germfree mice

Adrien François; Denise Grebert; Moez Rhimi; Mahendra Mariadassou; Laurent Naudon; Nicolas Meunier

Intestinal epithelium development is dramatically impaired in germfree rodents, but the consequences of the absence of microbiota have been overlooked in other epithelia. In the present study, we present the first description of the bacterial communities associated with the olfactory epithelium and explored differences in olfactory epithelium characteristics between germfree and conventional, specific pathogen-free, mice. While the anatomy of the olfactory epithelium was not significantly different, we observed a thinner olfactory cilia layer along with a decreased cellular turn-over in germfree mice. Using electro-olfactogram, we recorded the responses of olfactory sensitive neuronal populations to various odorant stimulations. We observed a global increase in the amplitude of responses to odorants in germfree mice as well as altered responses kinetics. These changes were associated with a decreased transcription of most olfactory transduction actors and of olfactory xenobiotic metabolising enzymes. Overall, we present here the first evidence that the microbiota modulates the physiology of olfactory epithelium. As olfaction is a major sensory modality for most animal species, the microbiota may have an important impact on animal physiology and behaviour through olfaction alteration.

Collaboration


Dive into the Nicolas Meunier's collaboration.

Top Co-Authors

Avatar

Denise Grebert

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Patrice Congar

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Roland Salesse

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Birte L. Nielsen

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Vincent Bombail

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Adrien François

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Aurélie Dewaele

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Aurélien Raynaud

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christine Baly

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Didier Durieux

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge