Nicolás Pedrini
National University of La Plata
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicolás Pedrini.
PLOS Neglected Tropical Diseases | 2009
Nicolás Pedrini; Sergio J. Mijailovsky; Juan R. Girotti; Raúl Stariolo; Rubén M. Cardozo; Alberto Gentile; M. Patricia Juárez
Background Triatoma infestans-mediated transmission of Tripanosoma cruzi, the causative agent of Chagas disease, remains as a major health issue in southern South America. Key factors of T. infestans prevalence in specific areas of the geographic Gran Chaco region—which extends through northern Argentina, Bolivia, and Paraguay—are both recurrent reinfestations after insecticide spraying and emerging pyrethroid-resistance over the past ten years. Among alternative control tools, the pathogenicity of entomopathogenic fungi against triatomines is already known; furthermore, these fungi have the ability to fully degrade hydrocarbons from T. infestans cuticle and to utilize them as fuel and for incorporation into cellular components. Methodology and Findings Here we provide evidence of resistance-related cuticle differences; capillary gas chromatography coupled to mass spectrometry analyses revealed that pyrethroid-resistant bugs have significantly larger amounts of surface hydrocarbons, peaking 56.2±6.4% higher than susceptible specimens. Also, a thicker cuticle was detected by scanning electron microscopy (32.1±5.9 µm and 17.8±5.4 µm for pyrethroid-resistant and pyrethroid-susceptible, respectively). In laboratory bioassays, we showed that the virulence of the entomopathogenic fungi Beauveria bassiana against T. infestans was significantly enhanced after fungal adaptation to grow on a medium containing insect-like hydrocarbons as the carbon source, regardless of bug susceptibility to pyrethroids. We designed an attraction-infection trap based on manipulating T. infestans behavior in order to facilitate close contact with B. bassiana. Field assays performed in rural village houses infested with pyrethroid-resistant insects showed 52.4% bug mortality. Using available mathematical models, we predicted that further fungal applications could eventually halt infection transmission. Conclusions This low cost, low tech, ecologically friendly methodology could help in controlling the spread of pyrethroid-resistant bugs.
Frontiers in Microbiology | 2013
Nicolás Pedrini; Almudena Ortiz-Urquiza; Carla Huarte-Bonnet; Shizhu Zhang; Nemat O. Keyhani
Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts via attachment to cuticular substrata and the production of enzymes for the degradation and penetration of insect cuticle. The outermost epicuticular layer consists of a complex mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain hydrocarbons are major components of the outer waxy layer of diverse insect species, where they serve to protect against desiccation and microbial parasites, and as recognition molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with overlapping substrate specificities. Alkanes and fatty acids are substrates for a specific subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon degradation. These enzymes activate alkanes by terminal oxidation to alcohols, which are further oxidized by alcohol and aldehyde dehydrogenases, whose products can enter β-oxidation pathways. B. bassiana contains at least 83 genes coding for cytochrome P450s (CYP), a subset of which are involved in hydrocarbon oxidation, and several of which represent new CYP subfamilies/families. Expression data indicated differential induction by alkanes and insect lipids and four CYP proteins have been partially characterized after heterologous expression in yeast. Gene knockouts revealed a phenotype for only one (cyp52X1) out of six genes examined to date. CYP52X1 oxidizes long chain fatty acids and participates in the degradation of specific epicuticular lipid components needed for breaching the insect waxy layer. Examining the hydrocarbon oxidizing CYP repertoire of pathogens involved in insect epicuticle degradation can lead to the characterization of enzymes with novel substrate specificities. Pathogen targeting may also represent an important co-evolutionary process regarding insect cuticular hydrocarbon synthesis.
Microbiology | 2010
Nicolás Pedrini; Shizhu Zhang; M. P. Juárez; Nemat O. Keyhani
The insect epicuticle or waxy layer comprises a heterogeneous mixture of lipids that include abundant levels of long-chain alkanes, alkenes, wax esters and fatty acids. This structure represents the first barrier against microbial attack and for broad-host-range insect pathogens, such as Beauveria bassiana, it is the initial interface mediating the host-pathogen interaction, since these organisms do not require any specialized mode of entry and infect target hosts via the cuticle. B. bassiana is able to grow on straight chain alkanes up to n-C(33) as a sole source of carbon and energy. The cDNA and genomic sequences, including putative regulatory elements, for eight cytochrome P450 enzymes, postulated to be involved in alkane and insect epicuticle degradation, were isolated and characterized. Expression studies using a range of alkanes as well as an insect-derived epicuticular extract from the blood-sucking bug Triatomas infestans revealed a differential expression pattern for the P450 genes examined, and suggest that B. bassiana contains a series of hydrocarbon-assimilating enzymes with overlapping specificity in order to target the surface lipids of insect hosts. Phylogenetic analysis of the translated ORFs of the sequences revealed that the enzyme which displayed the highest levels of induction on both alkanes and the insect epicuticular extract represents the founding member of a new cytochrome P450 family, with three of the other sequences assigned as the first members of new P450 subfamilies. The remaining four proteins clustered with known P450 families whose members include alkane monooxygenases.
Journal of Biological Chemistry | 2012
Shizhu Zhang; Emilie Widemann; Grausem Bernard; Agnès Lesot; Franck Pinot; Nicolás Pedrini; Nemat O. Keyhani
Background: The lipid-rich insect epicuticle mediates the initial interaction with microbial pathogens. Results: A novel cytochrome P450, CYP52X1, implicated in cuticular hydrocarbon assimilation was characterized from Beauveria bassiana. Conclusion: CPY52X1 displays fatty acid hydroxylase activity, contributes to cuticle penetration, but is dispensable for virulence once the cuticle has been breached. Significance: These results expand the enzymatic repertoire entomopathogenic fungi express in targeting insects. Infection of insects by the entomopathogenic fungus Beauveria bassiana proceeds via attachment and penetration of the host cuticle. The outermost epicuticular layer or waxy layer of the insect represents a structure rich in lipids including abundant amounts of hydrocarbons and fatty acids. A member of a novel cytochrome P450 subfamily, CYP52X1, implicated in fatty acid assimilation by B. bassiana was characterized. B. bassiana targeted gene knockouts lacking Bbcyp52x1 displayed reduced virulence when topically applied to Galleria mellonella, but no reduction in virulence was noted when the insect cuticle was bypassed using an intrahemoceol injection assay. No significant growth defects were noted in the mutant as compared with the wild-type parent on any lipids substrates tested including alkanes and fatty acids. Insect epicuticle germination assays, however, showed reduced germination of ΔBbcyp52x1 conidia on grasshopper wings as compared with the wild-type parent. Complementation of the gene-knock with the full-length gene restored virulence and insect epicuticle germination to wild-type levels. Heterologous expression of CYP52X1 in yeast was used to characterize the substrate specificity of the enzyme. CYP52X1 displayed the highest activity against midrange fatty acids (C12:0 and C14:0) and epoxy stearic acid, 4–8-fold lower activity against C16:0, C18:1, and C18:2, and little to no activity against C9:0 and C18:0. Analyses of the products of the C12:0 and C18:1 reactions confirmed NADPH-dependent regioselective addition of a terminal hydroxyl to the substrates (ω-hydroxylase). These data implicate CYP52X1 as contributing to the penetration of the host cuticle via facilitating the assimilation of insect epicuticle lipids.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Nicolás Pedrini; Almudena Ortiz-Urquiza; Carla Huarte-Bonnet; Yanhua Fan; M. Patricia Juárez; Nemat O. Keyhani
Significance Although entomopathogenic fungi and their invertebrate hosts share a >300 million year co-evolutionary history, little is known concerning the biochemical and genetic basis of insect defensive tactics and the countermeasures evolved and evolving by the pathogen to thwart these defenses. Our results provide a molecular mechanism to help explain why some insects are more resistant to broad host-range entomopathogenic fungi. We identify beetle cuticular secretions and a fungal detoxifying enzyme as components of an arms race between insects and the fungal pathogen, suggesting an evolving role for the quinone reductase enzyme as a specific virulence factor for host quinone detoxification. As races have winners and losers, this paper captures a snapshot where the host is leading the race. Entomopathogenic fungi and their insect hosts represent a model system for examining invertebrate-pathogen coevolutionary selection processes. Here we report the characterization of competing components of an arms race consisting of insect protective antimicrobial compounds and evolving fungal mechanisms of detoxification. The insect pathogenic fungus Beauveria bassiana has a remarkably wide host range; however, some insects are resistant to fungal infection. Among resistant insects is the tenebrionid beetle Tribolium castaneum that produces benzoquinone-containing defensive secretions. Reduced fungal germination and growth was seen in media containing T. castaneum dichloromethane extracts or synthetic benzoquinone. In response to benzoquinone exposure, the fungus expresses a 1,4-benzoquinone oxidoreductase, BbbqrA, induced >40-fold. Gene knockout mutants (ΔBbbqrA) showed increased growth inhibition, whereas B. bassiana overexpressing BbbqrA (Bb::BbbqrAO) displayed increased resistance to benzoquinone compared with wild type. Increased benzoquinone reductase activity was detected in wild-type cells exposed to benzoquinone and in the overexpression strain. Heterologous expression and purification of BbBqrA in Escherichia coli confirmed NAD(P)H-dependent benzoquinone reductase activity. The ΔBbbqrA strain showed decreased virulence toward T. castaneum, whereas overexpression of BbbqrA increased mortality versus T. castaneum. No change in virulence was seen for the ΔBbbqrA or Bb::BbbqrAO strains when tested against the greater wax moth Galleria mellonella or the beetle Sitophilus oryzae, neither of which produce significant amounts of cuticular quinones. The observation that artificial overexpression of BbbqrA results in increased virulence only toward quinone-secreting insects implies the lack of strong selection or current failure of B. bassiana to counteradapt to this particular host defense throughout evolution.
Research and Reports in Tropical Medicine | 2011
Lucas Forlani; Nicolás Pedrini; M. Patricia Juárez
Control of domiciliated Triatoma infestans, the major Chagas disease vector in southern South America, is currently achieved by indoor residual spraying of infested houses with chemical insecticides. However, in recent years this strategy has been threatened by the emergence of pyrethroid-resistant bug populations. As an alternative approach, we have previously demonstrated the efficacy of the entomopathogenic fungus Beauveria bassiana to control T. infestans bugs regardless of their pyrethroid susceptibility. In this work, we tested the virulence and residual activity of a powdered fungal formulation, and studied the significance of the horizontal transmission process (autodissemination) to fungal infection of bugs. The B. bassiana-based formulation was highly virulent against all T. infestans stages, and maintained its insecticidal capability for at least 5 months under natural ambient conditions. We showed that horizontal transmission of conidia is associated to bug density, and contributes significantly to the overall population infection event.
Pest Management Science | 2014
Lucas Forlani; M. Patricia Juárez; Sabrina Lavarías; Nicolás Pedrini
BACKGROUND The chemical control of the Chagas disease vector Triatoma infestans is endangered by the emergence of pyrethroid resistance. An effective alternative control tool is the use of the entomopathogenic fungus Beauveria bassiana. The effect of deltamethrin on fungal growth, gene expression and enzyme activity in relation to detoxification, antioxidant response and oxidative stress levels was studied to evaluate fungal tolerance to deltamethrin. RESULTS The mean inhibitory concentration (IC50 ) was 50 µg deltamethrin/cm(2). Cytochrome P450 genes were differentially expressed; cyp52X1 and cyp617N1 transcripts were > 2-fold induced, followed by cyp655C1 (1.8-fold). Minor effects were observed on genes encoding for other P450s, epoxide hydrolase and glutathione S-transferase (GST). Superoxide dismutase (SOD) genes showed induction levels ≤ 2, catalase (CAT) and glutathione peroxidase genes were also induced ∼ 2-3-fold and < 2-fold, respectively. The activities of enzymes participating in the antioxidant defense system and phase II detoxification were also evaluated; SOD, CAT and GST activity showed significant differences with deltamethrin concentration. Lipid peroxidation levels and free proline content were also altered. CONCLUSIONS Beauveria bassiana GHA can be used combined with deltamethrin without significant metabolic detrimental effects. This combination will help optimizing the benefits and increasing the efficacy of vector control tools.
Applied Biochemistry and Biotechnology | 2018
Carla Huarte-Bonnet; Suresh Kumar; Mario Carlos Nazareno Saparrat; Juan R. Girotti; Marianela Santana; John E. Hallsworth; Nicolás Pedrini
Several filamentous fungi are able to concomitantly assimilate both aliphatic and polycyclic aromatic hydrocarbons that are the biogenic by-products of some industrial processes. Cytochrome P450 monooxygenases catalyze the first oxidation reaction for both types of substrate. Among the cytochrome P450 (CYP) genes, the family CYP52 is implicated in the first hydroxylation step in alkane-assimilation processes, while genes belonging to the family CYP53 have been linked with oxidation of aromatic hydrocarbons. Here, we perform a comparative analysis of CYP genes belonging to clans CYP52 and CYP53 in Aspergillus niger, Beauveria bassiana, Metarhizium robertsii (formerly M. anisopliae var. anisopliae), and Penicillium chrysogenum. These species were able to assimilate n-hexadecane, n-octacosane, and phenanthrene, exhibiting a species-dependent modification in pH of the nutrient medium during this process. Modeling of the molecular docking of the hydrocarbons to the cytochrome P450 active site revealed that both phenanthrene and n-octacosane are energetically favored as substrates for the enzymes codified by genes belonging to both CYP52 and CYP53 clans, and thus appear to be involved in this oxidation step. Analyses of gene expression revealed that CYP53 members were significantly induced by phenanthrene in all species studied, but only CYP52X1 and CYP53A11 from B. bassiana were highly induced with n-alkanes. These findings suggest that the set of P450 enzymes involved in hydrocarbon assimilation by fungi is dependent on phylogeny and reveal distinct substrate and expression specificities.
Ecotoxicology and Environmental Safety | 2013
Sabrina Lavarías; C. García; R. Crespo; Nicolás Pedrini; H. Heras
Several agrochemicals like organophosphates are extensively used to control pests in agricultural practices but they also adversely affect non-target fauna. The effect of organophosphorous fenitrothion on the prawn Macrobrachium borellii was evaluated. The 96-h LC50 was determined. Activity of superoxide dismutase, catalase, glutathione-S-transferase and lipid oxidation levels, were evaluated in the hepatopancreas from adults exposed to sublethal fenitrothion concentrations for 1, 2, 4 and 7 days. In addition, superoxide dismutase mRNA expression, acetylcholinesterase inhibition and haemocyte DNA damage were determined. The 96-h LC50 was 4.24μg/l of fenitrothion. Prawn exposed to sublethal FS concentrations showed an increase of both catalase and superoxide dismutase activities, mainly after 2 and 4 days exposure and an increase of glutathione-S-transferase activity from day 2 to day 7 while lipid oxidation levels increased mainly on day 1. Superoxide dismutase transcripts were significantly higher in fenitrothion -treated prawns, indicating an induction mechanism. Hemolymph analysis showed that while acetylcholinesterase activity decreased after 2 days, haemocytes displayed most DNA damage after 7-day exposure to fenitrothion. These results indicate that prawn enzymes are highly sensitive to fenitrothion exposure, and these biological responses in M. borellii could be valuable biomarkers to monitor organophosphorous contamination in estuarine environments.
Fungal Biology | 2017
Carla Huarte-Bonnet; Flávia R.S. Paixão; Juan C. Ponce; Marianela Santana; Eduardo Daniel Prieto; Nicolás Pedrini
The entomopathogenic fungus Beauveria bassiana is able to grow on insect cuticle hydrocarbons, inducing alkane assimilation pathways and concomitantly increasing virulence against insect hosts. In this study, we describe some physiological and molecular processes implicated in growth, nutritional stress response, and cellular alterations found in alkane-grown fungi. The fungal cytology was investigated using light and transmission electron microscopy while the surface topography was examined using atomic force microscopy. Additionally, the expression pattern of several genes associated with oxidative stress, peroxisome biogenesis, and hydrophobicity were analysed by qPCR. We found a novel type of growth in alkane-cultured B. bassiana similar to mycelial pellets described in other alkane-free fungi, which were able to produce viable conidia and to be pathogenic against larvae of the beetles Tenebrio molitor and Tribolium castaneum. Mycelial pellets were formed by hyphae cumulates with high peroxidase activity, exhibiting peroxisome proliferation and an apparent surface thickening. Alkane-grown conidia appeared to be more hydrophobic and cell surfaces displayed different topography than glucose-grown cells. We also found a significant induction in several genes encoding for peroxins, catalases, superoxide dismutases, and hydrophobins. These results show that both morphological and metabolic changes are triggered in mycelial pellets derived from alkane-grown B. bassiana.