Nicolás Pérez
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicolás Pérez.
Langmuir | 2010
Pablo Guardia; Nicolás Pérez; Amílcar Labarta; Xavier Batlle
We report on the effect of using decanoic acid as capping ligand on the synthesis of iron oxide nanoparticles by thermal decomposition of an organic iron precursor in organic medium. This procedure allowed us to control the particle size within 5 nm and about 30 nm by modifying the precursor-to-capping ligand ratio in a systematic fashion and to further expand the particle size range up to about 50 nm by adjusting the final synthesis temperature. The nanoparticles also showed high saturation magnetization of about 80-83 emu/g at low temperature, almost size-independent and close to the value for the bulk counterpart. Decanoic acid-coated nanoparticles were transferred to water by using tetramethylammonium hydroxide, which allowed further coating with silica in a tetraethyl orthosilicate solution. Consequently, these iron oxide nanoparticles are tunable in size and highly magnetic, and they could become suitable candidates for various biomedical applications such as contrast agents for magnetic resonance imaging and magnetic carriers for drug delivery.
Nano Letters | 2012
Juan Salafranca; Jaume Gazquez; Nicolás Pérez; Amílcar Labarta; Sokrates T. Pantelides; Stephen J. Pennycook; Xavier Batlle; M. Varela
The properties of magnetic nanoparticles tend to be depressed by the unavoidable presence of a magnetically inactive surface layer. However, outstanding magnetic properties with a room-temperature magnetization near the bulk value can be produced by high-temperature synthesis methods involving capping with organic acid. The capping molecules are not magnetic, so the origin of the enhanced magnetization remains elusive. In this work, we present a real-space characterization on the subnanometer scale of the magnetic, chemical, and structural properties of iron-oxide nanoparticles via aberration-corrected scanning transmission electron microscopy. For the first time, electron magnetic chiral dichroism is used to map the magnetization of nanoparticles in real space with subnanometer spatial resolution. We find that the surface of the nanoparticles is magnetically ordered. Combining the results with density functional calculations, we establish how magnetization is restored in the surface layer. The bonding with the acids O atoms results in O-Fe atomic configuration and distances close to bulk values. We conclude that the nature and number of molecules in the capping layer is an essential ingredient in the fabrication of nanoparticles with optimal magnetic properties.
Journal of Applied Physics | 2011
Xavier Batlle; Nicolás Pérez; Pablo Guardia; Òscar Iglesias; A. Labarta; F. Bartolomé; L. M. García; J. Bartolomé; Alejandro G. Roca; M.P. Morales; Carlos J. Serna
The magnetic behavior of Fe3� xO4 nanoparticles synthesized by either high-temperature decomposition of an organic iron precursor or low-temperature coprecipitation in aqueous conditions is compared. Transmission electron microscopy, x-ray absorption spectroscopy, x-ray magnetic circular dichroism, and magnetization measurements show that nanoparticles synthesized by thermal decomposition display high crystal quality and bulklike magnetic and electronic properties, while nanoparticles synthesized by coprecipitation show much poorer crystallinity and particlelike phenomenology, including reduced magnetization, high closure fields, and shifted hysteresis loops. The key role of the crystal quality is thus suggested, because particlelike behavior for particles larger than about 5 nm is observed only when the particles are structurally defective. These conclusions are supported by Monte Carlo simulations. It is also shown that thermal decomposition is capable of producing nanoparticles that, after further stabilization in physiological conditions, are suitable for biomedical applications such as magnetic resonance imaging or biodistribution studies. V C 2011 American Institute of Physics. [doi:10.1063/1.3559504]
Nanomedicine: Nanotechnology, Biology and Medicine | 2010
Raquel Mejías; Sonia Pérez-Yagüe; Alejandro G. Roca; Nicolás Pérez; Angeles Villanueva; Magdalena Cañete; Santos Mañes; Jesús Ruiz-Cabello; Marina Benito; Amílcar Labarta; Xavier Batlle; Sabino Veintemillas-Verdaguer; M. Puerto Morales; Domingo F. Barber; Carlos J. Serna
BACKGROUND & AIM Uptake, cytotoxicity and interaction of improved superparamagnetic iron oxide nanoparticles were studied in cells, tissues and organs after single and multiple exposures. MATERIAL & METHOD We prepared dimercaptosuccinic acid-coated iron oxide nanoparticles by thermal decomposition in organic medium, resulting in aqueous suspensions with a small hydrodynamic size (< 100 nm), high saturation magnetization and susceptibility, high nuclear magnetic resonance contrast and low cytotoxicity. RESULTS In vitro and in vivo behavior showed that these nanoparticles are efficient carriers for drug delivery to the liver and brain that can be combined with MRI detection.
Applied Physics Letters | 2009
Nicolás Pérez; F. Bartolomé; L. M. García; J. Bartolomé; Maria del Puerto Morales; Carlos J. Serna; A. Labarta; Xavier Batlle
5 nm Fe3−xO4 nanoparticles were synthesized either by high-temperature decomposition in organic phase or in low-temperature aqueous conditions. In the first case oleic acid was covalently bonded to the nanoparticles; in the second case polyvinyl alcohol (PVA) yielded a protective coating without chemical bond. Magnetization measurements and x-ray magnetic circular dichroism showed a saturation magnetization close to bulk magnetite and an orbital moment effectively quenched in covalently bonded nanoparticles. PVA-coated nanoparticles showed a reduced value of the magnetization and ∼3 fold increase in the orbital moment. High resolution electron microscopy suggested that this was related to the nanostructure of the samples.
Nano Letters | 2016
Mariana Medina-Sánchez; Bergoi Ibarlucea; Nicolás Pérez; Dmitriy D. Karnaushenko; Sonja M. Weiz; Larysa Baraban; Gianaurelio Cuniberti; Oliver G. Schmidt
We report an ultrasensitive label-free DNA biosensor with fully on-chip integrated rolled-up nanomembrane electrodes. The hybridization of complementary DNA strands (avian influenza virus subtype H1N1) is selectively detected down to attomolar concentrations, an unprecedented level for miniaturized sensors without amplification. Impedimetric DNA detection with such a rolled-up biosensor shows 4 orders of magnitude sensitivity improvement over its planar counterpart. Furthermore, it is observed that the impedance response of the proposed device is contrary to the expected behavior due to its particular geometry. To further investigate this difference, a thorough model analysis of the measured signal and the electric field calculation is performed, revealing enhanced electron hopping/tunneling along the DNA chains due to an enriched electric field inside the tube. Likewise, conformational changes of DNA might also contribute to this effect. Accordingly, these highly integrated three-dimensional sensors provide a tool to study electrical properties of DNA under versatile experimental conditions and open a new avenue for novel biosensing applications (i.e., for protein, enzyme detection, or monitoring of cell behavior under in vivo like conditions).
Applied Physics Letters | 2015
Nicolás Pérez; Michael Melzer; Denys Makarov; Olaf Ueberschär; Ramona Ecke; Stefan E. Schulz; Oliver G. Schmidt
We fabricate high-performance giant magnetoresistive (GMR) sensorics on Si wafers, which are subsequently thinned down to 100 μm or 50 μm to realize mechanically flexible sensing elements. The performance of the GMR sensors upon bending is determined by the thickness of the Si membrane. Thus, bending radii down to 15.5 mm and 6.8 mm are achieved for the devices on 100 μm and 50 μm Si supports, respectively. The GMR magnitude remains unchanged at the level of (15.3 ± 0.4)% independent of the support thickness and bending radius. However, a progressive broadening of the GMR curve is observed associated with the magnetostriction of the containing Ni81Fe19 alloy, which is induced by the tensile bending strain generated on the surface of the Si membrane. An effective magnetostriction value of λs = 1.7 × 10−6 is estimated for the GMR stack. Cyclic bending experiments showed excellent reproducibility of the GMR curves during 100 bending cycles.
Physical Chemistry Chemical Physics | 2011
Nicolás Pérez; Francisco López-Calahorra; Amílcar Labarta; Xavier Batlle
The process of formation of magnetite nanoparticles has been investigated by liquid chromatography and mass spectroscopy in the liquid phase decomposition of either Fe(III) acetylacetonate with decanoic acid or Fe(III) decanoate. In both cases, the dissociation into radicals of the iron carboxylate bonds provides the reduction of the Fe(III) cations and the oxygen atoms required for the formation of the mixed-valence inverse spinel magnetite structure. A reaction mechanism is proposed. It is also shown that the reaction of free decanoic acid with the Fe(III) cations in solution promotes the growth of faceted particles at the reflux temperature of the solvent (ca. 280 °C), while, under the same conditions, the stepwise decomposition of the Fe(III) decanoate generates smaller and pseudo-spherical particles. The latter also yields faceted particles when the temperature is increased above that of the total decomposition of the salt. Magnetic measurements make evident that the reaction starting from Fe(III) acetylacetonate yields nanoparticles with higher magnetization and lower spin disorder, due to the improved regularity of the surface crystal structure. The starting conditions for the decarboxylation process thus affect the morphology and magnetic properties of the resulting nanoparticles.
Journal of the Acoustical Society of America | 2014
Marco A. B. Andrade; Nicolás Pérez; Julio C. Adamowski
The spontaneous oscillation of solid spheres in a single-axis acoustic levitator is experimentally investigated by using a high speed camera to record the position of the levitated sphere as a function of time. The oscillations in the axial and radial directions are systematically studied by changing the sphere density and the acoustic pressure amplitude. In order to interpret the experimental results, a simple model based on a spring-mass system is applied in the analysis of the sphere oscillatory behavior. This model requires the knowledge of the acoustic pressure distribution, which was obtained numerically by using a linear finite element method (FEM). Additionally, the linear acoustic pressure distribution obtained by FEM was compared with that measured with a laser Doppler vibrometer. The comparison between numerical and experimental pressure distributions shows good agreement for low values of pressure amplitude. When the pressure amplitude is increased, the acoustic pressure distribution becomes nonlinear, producing harmonics of the fundamental frequency. The experimental results of the spheres oscillations for low pressure amplitudes are consistent with the results predicted by the simple model based on a spring-mass system.
Materials | 2016
Nicolás Pérez; Flávio Buiochi; Marco A. B. Andrade; Julio C. Adamowski
Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods.