Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole Brimer is active.

Publication


Featured researches published by Nicole Brimer.


Journal of Virology | 2007

Degradation of Tyrosine Phosphatase PTPN3 (PTPH1) by Association with Oncogenic Human Papillomavirus E6 Proteins

Ming Jing; Joanna Bohl; Nicole Brimer; Michael Kinter; Scott Vande Pol

ABSTRACT Oncoproteins from DNA tumor viruses associate with critical cellular proteins to regulate cell proliferation, survival, and differentiation.Human papillomavirus (HPV) E6 oncoproteins have been previously shown to associate with a cellular HECT domain ubiquitin ligase termed E6AP (UBE3A). Here we show that the E6-E6AP complex associates with and targets the degradation of the protein tyrosine phosphatase PTPN3 (PTPH1) in vitro and in living cells. PTPN3 is a membrane-associated tyrosine phosphatase with FERM, PDZ, and PTP domains previously implicated in regulating tyrosine phosphorylation of growth factor receptors and p97 VCP (valosin-containing protein, termed Cdc48 in Saccharomyces cerevisiae) and is mutated in a subset of colon cancers. Degradation of PTPN3 by E6 requires E6AP, the proteasome, and an interaction between the carboxy terminus of E6 and the PDZ domain of PTPN3. In transduced keratinocytes, E6 confers reduced growth factor requirements, a function that requires the PDZ ligand of E6 and that can in part be replicated by inhibiting the expression of PTPN3. This report demonstrates the potential of E6 to regulate phosphotyrosine metabolism through the targeted degradation of a tyrosine phosphatase.


Science | 2013

Structural basis for hijacking of cellular LxxLL motifs by papillomavirus E6 oncoproteins.

Katia Zanier; Sebastian Charbonnier; Abdellahi ould M’hamed ould Sidi; Alastair G. McEwen; Maria Giovanna Ferrario; Pierre Poussin-Courmontagne; Vincent Cura; Nicole Brimer; Khaled Ould Babah; Tina Ansari; Isabelle Muller; Roland H. Stote; Jean Cavarelli; Scott Vande Pol; Gilles Travé

Targeting HPV Papillomaviruses infect mammalian epithelial cells and induce cancers, including cervical cancer in humans. Vaccines against human papillomavirus (HPV) can prevent, but not cure, infection. A key viral oncoprotein, E6, acts by binding and inactivating many host proteins. Zanier et al. (p. 694) determined high-resolution crystal structures of bovine papillomavirus bound to a peptide from the focal adhesion protein, paxillin, and of HPV bound to a peptide from the ubiquitin ligase E6AP. The structures show that the peptide binds in a pocket formed by two zinc domains and a linker helix, which represents a promising target for therapeutics. Crystal structures show how a key oncoprotein in human papillomavirus binds host proteins. E6 viral oncoproteins are key players in epithelial tumors induced by papillomaviruses in vertebrates, including cervical cancer in humans. E6 proteins target many host proteins by specifically interacting with acidic LxxLL motifs. We solved the crystal structures of bovine (BPV1) and human (HPV16) papillomavirus E6 proteins bound to LxxLL peptides from the focal adhesion protein paxillin and the ubiquitin ligase E6AP, respectively. In both E6 proteins, two zinc domains and a linker helix form a basic-hydrophobic pocket, which captures helical LxxLL motifs in a way compatible with other interaction modes. Mutational inactivation of the LxxLL binding pocket disrupts the oncogenic activities of both E6 proteins. This work reveals the structural basis of both the multifunctionality and the oncogenicity of E6 proteins.


Oncogene | 2012

Cutaneous Papillomavirus E6 oncoproteins associate with MAML1 to repress transactivation and NOTCH signaling

Nicole Brimer; Charles E. Lyons; A E Wallberg; S B Vande Pol

Papillomavirus E6 oncoproteins associate with LXXLL motifs on target cellular proteins to alter their function. Using a proteomic approach, we found the E6 oncoproteins of cutaneous papillomaviruses Bovine Papillomavirus Type 1 (BPV-1) E6 and human papillomavirus (HPV) types 1 and 8 (1E6 and 8E6) associated with the MAML1 transcriptional co-activator. All three E6 proteins bind to an acidic LXXLL motif at the carboxy-terminus of MAML1 and repress transactivation by MAML1. MAML1 is best known as the co-activator and effector of NOTCH-induced transcription, and BPV-1 E6 represses synthetic NOTCH-responsive promoters, endogenous NOTCH-responsive promoters, and is found in a complex with MAML1 in stably transformed cells. BPV-1-induced papillomas show characteristics of repressed NOTCH signal transduction, including suprabasal expression of integrins, talin and basal type keratins, and delayed expression of the NOTCH-dependent HES1 transcription factor. These observations give rise to a model whereby papillomavirus oncoproteins, including BPV-1 E6, and the cancer-associated HPV-8 E6 repress NOTCH-induced transcription, thereby delaying keratinocyte differentiation.


Journal of Biological Chemistry | 2007

The Stardust Family Protein MPP7 Forms a Tripartite Complex with LIN7 and DLG1 That Regulates the Stability and Localization of DLG1 to Cell Junctions

Joanna Bohl; Nicole Brimer; Charles E. Lyons; Scott Vande Pol

MPP7, a previously uncharacterized member of the p55 Stardust family of membrane-associated guanylate kinase (MAGUK) proteins, was found in a tripartite complex with DLG1 and LIN7A or LIN7C. MPP7 dimerizes with all three LIN7 family members (LIN7A, -B, and -C) through interaction of the single L27 domain of LIN7 with the carboxyl-terminal L27 domain of MPP7, thereby stabilizing both proteins. The dimer of MPP7 with LIN7A or LIN7C associates with DLG1 through an interaction requiring the amino-terminal L27 domain of MPP7. The amino-terminal L27 domain of MPP7 is not sufficient for interaction with DLG1 but interacts efficiently only if MPP7 is in a complex with LIN7A or -C. Thus the specificity of interaction of DLG1 with the LIN7-MPP7 complex is determined by L27 interactions with both MPP7 and LIN7. The tripartite complex forms in a ratio of 1:1:1 and localizes to epithelial adherens junctions in a manner dependent upon MPP7. Expression of MPP7 stabilizes DLG1 in an insoluble compartment. Expression of MPP7 deleted of the PDZ or Src homology 3 domain redistributes MPP7, DLG1, and LIN7 out of adherens junctions and into the soluble cytoplasmic fraction without changing the localization of E-cadherin. Thus, the stability and localization of DLG1 to cell-cell junctions are complex functions determined by the expression and association of particular Stardust family members together with particular LIN7 family members.


Journal of Virology | 2012

Peptide interactions stabilize and restructure human papillomavirus type 16 E6 to interact with p53.

Tina Ansari; Nicole Brimer; Scott Vande Pol

ABSTRACT Human papillomavirus type 16 (HPV-16) E6 (16E6) binds the E3 ubiquitin ligase E6AP and p53, thereby targeting degradation of p53 (M. Scheffner, B. A. Werness, J. M. Huibregtse, A. J. Levine, and P. M. Howley, Cell 63:1129–1136, 1990). Here we show that minimal 16E6-binding LXXLL peptides reshape 16E6 to confer p53 interaction and stabilize 16E6 in vivo but that degradation of p53 by 16E6 requires E6AP expression. These experiments establish a general mechanism for how papillomavirus E6 binding to LXXLL peptides reshapes E6 to then act as an adapter molecule.


Journal of Virology | 2014

Papillomavirus E6 PDZ Interactions Can Be Replaced by Repression of p53 To Promote Episomal Human Papillomavirus Genome Maintenance

Nicole Brimer; Scott Vande Pol

ABSTRACT Cancer-associated human papillomaviruses (HPVs) express E6 oncoproteins that target the degradation of p53 and have a carboxy-terminal PDZ ligand that is required for stable episomal maintenance of the HPV genome. We find that the E6 PDZ ligand can be deleted and the HPV genome stably maintained if cellular p53 is inactivated. This indicates that the E6-PDZ interaction promotes HPV genome maintenance at least in part by neutralization of an activity that can arise from residual undegraded p53.


Journal of Virology | 2008

Transformation by Bovine Papillomavirus Type 1 E6 Requires Paxillin

Ramon Wade; Nicole Brimer; Scott Vande Pol

ABSTRACT Papillomavirus E6 proteins are adapters that change the function of cellular regulatory proteins. The bovine papillomavirus type 1 E6 (BE6) binds to LXXLL peptide sequences termed LD motifs (consensus sequence LDXLLXXL) on the cellular protein paxillin that is a substrate of Src and focal adhesion kinases. Anchorage-independent transformation induced by BE6 required both paxillin and BE6-binding LD motifs on paxillin but was independent of the major tyrosine phosphorylation sites of paxillin. The essential role of paxillin in transformation by BE6 highlights the role of paxillin in the transduction of cellular signals that result in anchorage-independent cell proliferation.


Journal of Biological Chemistry | 2011

Paxillin Enables Attachment-independent Tyrosine Phosphorylation of Focal Adhesion Kinase and Transformation by RAS

Ramon Wade; Nicole Brimer; Charles E. Lyons; Scott Vande Pol

Background: Integrin signaling causes FAK tyrosine phosphorylation upon cell attachment. Results: Paxillin and not the closely related HIC5 protein supports tyrosine phosphorylation of FAK in the absence of cell attachment and augments transformation by activated RAS oncogenes. Conclusion: FAK can be activated either by cell attachment or by paxillin association without cell attachment. Significance: Paxillin and not HIC5 augments cell transformation through FAK activation. Paxillin and HIC5 are closely related adapter proteins that regulate cell migration and are tyrosine-phosphorylated by focal adhesion kinase (FAK). Paxillin, HIC5, and FAK tyrosine phosphorylation increase upon cell attachment and decrease upon detachment from extracellular matrix. Unexpectedly, we found that although FAK tyrosine phosphorylation in attached cells did not require paxillin, in detached fibroblasts there was remaining FAK tyrosine phosphorylation that required expression of paxillin and was not supported by HIC5. The support of attachment-independent FAK tyrosine phosphorylation required the paxillin LIM domains and suggested that paxillin might facilitate oncogenic transformation. Paxillin but not HIC5 augmented anchorage-independent cell proliferation induced by RAS. Both anchorage-independent FAK tyrosine phosphorylation and RAS-induced colony formation required multiple docking sites on paxillin, including LD4 (docking sites for FAK-Src and GIT1/2-PIX-NCK-PAK complex), LD5, and all four carboxyl-terminal LIM domains (that bind tubulin and PTP-PEST). Analysis using paxillin mutants dissociated domains of paxillin that are required for regulation of cell migration from domains that are required for anchorage-independent cell proliferation and demonstrated essential functions of the paxillin LIM domains that are not found in HIC5 LIM domains. These results highlight the role of paxillin in facilitating attachment-independent signal transduction implicated in cancer.


Journal of Virology | 2007

Human Papillomavirus E6 Regulates the Cytoskeleton Dynamics of Keratinocytes through Targeted Degradation of p53

Brooke Cooper; Nicole Brimer; Scott Vande Pol

ABSTRACT The attachment and spreading of keratinocyte cells result from interactions between integrins and immobilized extracellular matrix molecules. Human papillomavirus type 16 (HPV-16) E6 augmented the kinetics of cell spreading, while E6 genes from HPV-11 or bovine papillomavirus type 1 did not. The ability of E6 to interact with the E6AP ubiquitin ligase and target p53 degradation was required to augment cell-spreading kinetics; dominant negative p53 alleles also enhanced the kinetics of cell spreading and the level of attachment of cells to hydrophobic surfaces. The targeted degradation of p53 by E6 may contribute to the invasive phenotype exhibited by cervical cells that contain high-risk HPV types.


Protein Expression and Purification | 2011

Strategies for bacterial expression of protein-peptide complexes: application to solubilization of papillomavirus E6.

Abdellahi ould M’hamed ould Sidi; Khaled Ould Babah; Nicole Brimer; Yves Nominé; Christophe Romier; Bruno Kieffer; Scott Vande Pol; Gilles Travé; Katia Zanier

E6 is a small oncoprotein involved in tumorigenesis induced by papillomaviruses (PVs). E6 often recognizes its cellular targets by binding to short motifs presenting the consensus LXXLL. E6 proteins have long resisted structural analysis. We found that bovine papillomavirus type 1 (BPV1) E6 binds the N-terminal LXXLL motif of the cellular protein paxillin with significantly higher affinity as compared to other E6/peptide interactions. Although recombinant BPV1 E6 was poorly soluble in the free state, provision of the paxillin LXXLL peptide during BPV1 E6 biosynthesis greatly enhanced the proteins solubility. Expression of BPV1 E6/LXXLL peptide complexes was carried out in bacteria in the form of triple fusion constructs comprising, from N- to C-terminus, the soluble carrier protein maltose binding protein (MBP), the LXXLL motif and the E6 protein. A TEV protease cleavage site was placed either between MBP and LXXLL motif or between LXXLL motif and E6. These constructs allowed us to produce highly concentrated samples of BPV1 E6, either covalently fused to the C-terminus of the LXXLL motif (intra-molecular complex) or non-covalently bound to it (inter-molecular complex). Heteronuclear NMR measurements were performed and showed that the E6 protein was folded with similar conformations in both covalent and non-covalent complexes. These data open the way to novel structural and functional studies of the BPV1 E6 in complex with its preferential target motif.

Collaboration


Dive into the Nicole Brimer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanna Bohl

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Ramon Wade

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

Brooke Cooper

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Tina Ansari

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gilles Travé

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Katia Zanier

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Khaled Ould Babah

École Normale Supérieure

View shared research outputs
Researchain Logo
Decentralizing Knowledge