Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole C. Berchtold is active.

Publication


Featured researches published by Nicole C. Berchtold.


Trends in Neurosciences | 2002

Exercise: a behavioral intervention to enhance brain health and plasticity

Carl W Cotman; Nicole C. Berchtold

Extensive research on humans suggests that exercise could have benefits for overall health and cognitive function, particularly in later life. Recent studies using animal models have been directed towards understanding the neurobiological bases of these benefits. It is now clear that voluntary exercise can increase levels of brain-derived neurotrophic factor (BDNF) and other growth factors, stimulate neurogenesis, increase resistance to brain insult and improve learning and mental performance. Recently, high-density oligonucleotide microarray analysis has demonstrated that, in addition to increasing levels of BDNF, exercise mobilizes gene expression profiles that would be predicted to benefit brain plasticity processes. Thus, exercise could provide a simple means to maintain brain function and promote brain plasticity.


Trends in Neurosciences | 2007

Exercise builds brain health: key roles of growth factor cascades and inflammation

Carl W Cotman; Nicole C. Berchtold; Lori-Ann Christie

Human and other animal studies demonstrate that exercise targets many aspects of brain function and has broad effects on overall brain health. The benefits of exercise have been best defined for learning and memory, protection from neurodegeneration and alleviation of depression, particularly in elderly populations. Exercise increases synaptic plasticity by directly affecting synaptic structure and potentiating synaptic strength, and by strengthening the underlying systems that support plasticity including neurogenesis, metabolism and vascular function. Such exercise-induced structural and functional change has been documented in various brain regions but has been best-studied in the hippocampus - the focus of this review. A key mechanism mediating these broad benefits of exercise on the brain is induction of central and peripheral growth factors and growth factor cascades, which instruct downstream structural and functional change. In addition, exercise reduces peripheral risk factors such as diabetes, hypertension and cardiovascular disease, which converge to cause brain dysfunction and neurodegeneration. A common mechanism underlying the central and peripheral effects of exercise might be related to inflammation, which can impair growth factor signaling both systemically and in the brain. Thus, through regulation of growth factors and reduction of peripheral and central risk factors, exercise ensures successful brain function.


Molecular Brain Research | 1998

Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus

Heather S. Oliff; Nicole C. Berchtold; Paul J. Isackson; Carl W. Cotman

Previous results from our laboratory indicate that two nights of voluntary wheel running upregulates brain-derived neurotrophic factor (BDNF) mRNA expression in the hippocampus. In order to investigate the time-course of the BDNF response and to examine how physical activity preferentially activates particular transcriptional pathways, the effects of 6 and 12 h of voluntary wheel running on BDNF and exons I-IV mRNA expression were investigated in rats. Hippocampal full-length BDNF mRNA expression was rapidly influenced by physical activity, showing significant increases in expression levels as soon as 6 h of voluntary wheel running. Moreover, there was a strong positive correlation between distance run and BDNF mRNA expression. Exon I mRNA expression was significantly upregulated after 6 h of running and was maintained or enhanced by 12 h of voluntary running. Exon II had a slower time-course and was significantly upregulated after 12 h, selectively in the CA1 hippocampal region. Exon III and Exon IV showed no significant increase in expression level after 6 or 12 h of running in the paradigm studied. It is significant that the rapid neurotrophin response is demonstrated for a physiologically relevant stimulus, as opposed to the extreme conditions of seizure paradigms. Furthermore, exercise-induced upregulation of BDNF may help increase the brains resistance to damage and neurodegeneration that occurs with aging.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Gene expression changes in the course of normal brain aging are sexually dimorphic.

Nicole C. Berchtold; David H. Cribbs; Paul D. Coleman; Joseph Rogers; Elizabeth Head; Ronald C. Kim; Tom Beach; Carol A. Miller; Juan C. Troncoso; John Q. Trojanowski; H. Ronald Zielke; Carl W. Cotman

Gene expression profiles were assessed in the hippocampus, entorhinal cortex, superior-frontal gyrus, and postcentral gyrus across the lifespan of 55 cognitively intact individuals aged 20–99 years. Perspectives on global gene changes that are associated with brain aging emerged, revealing two overarching concepts. First, different regions of the forebrain exhibited substantially different gene profile changes with age. For example, comparing equally powered groups, 5,029 probe sets were significantly altered with age in the superior-frontal gyrus, compared with 1,110 in the entorhinal cortex. Prominent change occurred in the sixth to seventh decades across cortical regions, suggesting that this period is a critical transition point in brain aging, particularly in males. Second, clear gender differences in brain aging were evident, suggesting that the brain undergoes sexually dimorphic changes in gene expression not only in development but also in later life. Globally across all brain regions, males showed more gene change than females. Further, Gene Ontology analysis revealed that different categories of genes were predominantly affected in males vs. females. Notably, the male brain was characterized by global decreased catabolic and anabolic capacity with aging, with down-regulated genes heavily enriched in energy production and protein synthesis/transport categories. Increased immune activation was a prominent feature of aging in both sexes, with proportionally greater activation in the female brain. These data open opportunities to explore age-dependent changes in gene expression that set the balance between neurodegeneration and compensatory mechanisms in the brain and suggest that this balance is set differently in males and females, an intriguing idea.


European Journal of Neuroscience | 2001

Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus

Nicole C. Berchtold; J. Patrick Kesslak; Christian J. Pike; Paul A. Adlard; Carl W. Cotman

We investigated the possibility that estrogen and exercise interact in the hippocampus and regulate brain‐derived neurotrophic factor (BDNF), a molecule increasingly recognized for its role in plasticity and neuron function. An important aspect of this study is to examine the effect of different time intervals between estrogen loss and estrogen replacement intervention. We demonstrate that in the intact female rat, physical activity increases hippocampal BDNF mRNA and protein levels. However, the exercise effect on BDNF up‐regulation is reduced in the absence of estrogen, in a time‐dependent manner. In addition, voluntary activity itself is stimulated by the presence of estrogen. In exercising animals, estrogen deprivation reduced voluntary activity levels, while estrogen replacement restored activity to normal levels. In sedentary animals, estrogen deprivation (ovariectomy) decreased baseline BDNF mRNA and protein, which were restored by estrogen replacement. Despite reduced activity levels in the ovariectomized condition, exercise increased BDNF mRNA levels in the hippocampus after short‐term (3 weeks) estrogen deprivation. However, long‐term estrogen‐deprivation blunted the exercise effect. After 7 weeks of estrogen deprivation, exercise alone no longer affected either BDNF mRNA or protein levels. However, exercise in combination with long‐term estrogen replacement increased BDNF protein above the effects of estrogen replacement alone. Interestingly, protein levels across all conditions correlated most closely with mRNA levels in the dentate gyrus, suggesting that expression of mRNA in this hippocampal region may be the major contributor to the hippocampal BDNF protein pool. The interaction of estrogen, physical activity and hippocampal BDNF is likely to be an important issue for maintenance of brain health, plasticity and general well‐being, particularly in women.


Neurobiology of Aging | 1998

Evolution in the conceptualization of dementia and Alzheimer's disease : Greco-Roman period to the 1960s

Nicole C. Berchtold; Carl W. Cotman

Most histories of senile dementia commence with Alois Alzheimers description in 1906 of the first case of Alzheimers disease, yet the history of senile dementia before 1906 is quite rich, dating back to the ancient Greek and Roman philosophers and physicians. Over the 2500 years since ancient times, the concept of senile dementia has evolved from a rather vague notion that mental decline occurred inevitably in old age, to become defined today by a distinct set of clinical and pathological features with the potential for treatment and prevention within grasp. Throughout history, many elderly individuals with unpredictable behavior were sequestered in institutions, and the line between mental disorders and senile dementia was hazy at best. The identification of Alzheimers disease at the onset of the 20th century was a turning point for the understanding of senile dementia, and the concepts and histological findings presented by the early researchers of Alzheimers disease remain relevant still today. Indeed, these early findings are proving to be a continuing source of insight, as many of the issues debated at the turn of the century remain unresolved still today. This paper thus traces the history of the evolution of our current conceptualization of Alzheimers disease from the amorphous Greco-Roman concept of age-associated dementia.


Neuroscience | 2010

Exercise and time-dependent benefits to learning and memory

Nicole C. Berchtold; Nicholas A. Castello; Carl W. Cotman

While it is well established that exercise can improve cognitive performance, it is unclear how long these benefits endure after exercise has ended. Accordingly, the effects of voluntary exercise on cognitive function and brain-derived neurotrophic factor (BDNF) protein levels, a major player in the mechanisms governing the dynamics of memory formation and storage, were assessed immediately after a 3-week running period, or after a 1-week or 2-week delay following the exercise period. All exercised mice showed improved performance on the radial arm water maze relative to sedentary animals. Unexpectedly, fastest acquisition (fewest errors and shortest latency) occurred in animals trained following a 1-week delay, while best memory performance in the probe trial was observed in those trained immediately after the exercise period. Assessment of the time course of hippocampal BDNF availability following exercise revealed significant elevations of BDNF immediately after the exercise period (186% of sedentary levels) and at 1 and 2 weeks after exercise ended, with levels returning to baseline by 3-4 weeks. BDNF protein levels showed a positive correlation with cognitive improvement in radial water maze training and with memory performance on day 4, supporting the idea that BDNF availability contributes to the time-dependent cognitive benefits of exercise revealed in this study. Overall, this novel approach assessing the temporal endurance of cognitive and biochemical effects of exercise unveils new concepts in the exercise-learning field, and reveals that beneficial effects of exercise on brain plasticity continue to evolve even after exercise has ended.


The Journal of Neuroscience | 2009

Axonal mRNA in Uninjured and Regenerating Cortical Mammalian Axons

Anne Marion Taylor; Nicole C. Berchtold; Victoria M. Perreau; Christina H. Tu; Noo Li Jeon; Carl W. Cotman

Using a novel microfluidic chamber that allows the isolation of axons without contamination by nonaxonal material, we have for the first time purified mRNA from naive, matured CNS axons, and identified the presence of >300 mRNA transcripts. We demonstrate that the transcripts are axonal in nature, and that many of the transcripts present in uninjured CNS axons overlap with those previously identified in PNS injury-conditioned DRG axons. The axonal transcripts detected in matured cortical axons are enriched for protein translational machinery, transport, cytoskeletal components, and mitochondrial maintenance. We next investigated how the axonal mRNA pool changes after axotomy, revealing that numerous gene transcripts related to intracellular transport, mitochondria and the cytoskeleton show decreased localization 2 d after injury. In contrast, gene transcripts related to axonal targeting and synaptic function show increased localization in regenerating cortical axons, suggesting that there is an increased capacity for axonal outgrowth and targeting, and increased support for synapse formation and presynaptic function in regenerating CNS axons after injury. Our data demonstrate that CNS axons contain many mRNA species of diverse functions, and suggest that, like invertebrate and PNS axons, CNS axons synthesize proteins locally, maintaining a degree of autonomy from the cell body.


Journal of Neuroinflammation | 2012

Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: A microarray study

David H. Cribbs; Nicole C. Berchtold; Victoria M. Perreau; Paul D. Coleman; Joseph G. Rogers; Andrea J. Tenner; Carl W. Cotman

BackgroundThis study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD).MethodsIn a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus.ResultsSeveral novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I and II.ConclusionsUnexpectedly, the extent of innate immune gene upregulation in AD was modest relative to the robust response apparent in the aged brain, consistent with the emerging idea of a critical involvement of inflammation in the earliest stages, perhaps even in the preclinical stage, of AD. Ultimately, our data suggest that an important strategy to maintain cognitive health and resilience involves reducing chronic innate immune activation that should be initiated in late midlife.


PLOS ONE | 2010

Deficient Liver Biosynthesis of Docosahexaenoic Acid Correlates with Cognitive Impairment in Alzheimer's Disease

Giuseppe Astarita; Kwang-Mook Jung; Nicole C. Berchtold; Vinh Q. Nguyen; Daniel L. Gillen; Elizabeth Head; Carl W. Cotman; Daniele Piomelli

Reduced brain levels of docosahexaenoic acid (C22:6n-3), a neurotrophic and neuroprotective fatty acid, may contribute to cognitive decline in Alzheimers disease. Here, we investigated whether the liver enzyme system that provides docosahexaenoic acid to the brain is dysfunctional in this disease. Docosahexaenoic acid levels were reduced in temporal cortex, mid-frontal cortex and cerebellum of subjects with Alzheimers disease, compared to control subjects (P = 0.007). Mini Mental State Examination (MMSE) scores positively correlated with docosahexaenoic/α-linolenic ratios in temporal cortex (P = 0.005) and mid-frontal cortex (P = 0.018), but not cerebellum. Similarly, liver docosahexaenoic acid content was lower in Alzheimers disease patients than control subjects (P = 0.011). Liver docosahexaenoic/α-linolenic ratios correlated positively with MMSE scores (r = 0.78; P<0.0001), and negatively with global deterioration scale grades (P = 0.013). Docosahexaenoic acid precursors, including tetracosahexaenoic acid (C24:6n-3), were elevated in liver of Alzheimers disease patients (P = 0.041), whereas expression of peroxisomal d-bifunctional protein, which catalyzes the conversion of tetracosahexaenoic acid into docosahexaenoic acid, was reduced (P = 0.048). Other genes involved in docosahexaenoic acid metabolism were not affected. The results indicate that a deficit in d-bifunctional protein activity impairs docosahexaenoic acid biosynthesis in liver of Alzheimers disease patients, lessening the flux of this neuroprotective fatty acid to the brain.

Collaboration


Dive into the Nicole C. Berchtold's collaboration.

Top Co-Authors

Avatar

Carl W. Cotman

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian J. Pike

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elaine Delvaux

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Jennifer Nolz

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Omar M. Khdour

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge