Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole C. Deziel is active.

Publication


Featured researches published by Nicole C. Deziel.


Journal of Exposure Science and Environmental Epidemiology | 2017

A systematic evaluation of chemicals in hydraulic-fracturing fluids and wastewater for reproductive and developmental toxicity

Elise G. Elliott; Adrienne S. Ettinger; Brian P. Leaderer; Michael B. Bracken; Nicole C. Deziel

Hydraulic-fracturing fluids and wastewater from unconventional oil and natural gas development contain hundreds of substances with the potential to contaminate drinking water. Challenges to conducting well-designed human exposure and health studies include limited information about likely etiologic agents. We systematically evaluated 1021 chemicals identified in hydraulic-fracturing fluids (n=925), wastewater (n=132), or both (n=36) for potential reproductive and developmental toxicity to triage those with potential for human health impact. We searched the REPROTOX database using Chemical Abstract Service registry numbers for chemicals with available data and evaluated the evidence for adverse reproductive and developmental effects. Next, we determined which chemicals linked to reproductive or developmental toxicity had water quality standards or guidelines. Toxicity information was lacking for 781 (76%) chemicals. Of the remaining 240 substances, evidence suggested reproductive toxicity for 103 (43%), developmental toxicity for 95 (40%), and both for 41 (17%). Of these 157 chemicals, 67 had or were proposed for a federal water quality standard or guideline. Our systematic screening approach identified a list of 67 hydraulic fracturing-related candidate analytes based on known or suspected toxicity. Incorporation of data on potency, physicochemical properties, and environmental concentrations could further prioritize these substances for future drinking water exposure assessments or reproductive and developmental health studies.


Environmental Health Perspectives | 2014

Residential Levels of Polybrominated Diphenyl Ethers and Risk of Childhood Acute Lymphoblastic Leukemia in California

Mary H. Ward; Joanne S. Colt; Nicole C. Deziel; Todd P. Whitehead; Peggy Reynolds; Robert B. Gunier; Marcia Nishioka; Gary V. Dahl; Stephen M. Rappaport; Patricia A. Buffler; Catherine Metayer

Background: House dust is a major source of exposure to polybrominated diphenyl ethers (PBDEs), which are found at high levels in U.S. homes. Methods: We studied 167 acute lymphoblastic leukemia (ALL) cases 0–7 years of age and 214 birth certificate controls matched on date of birth, sex, and race/ethnicity from the Northern California Childhood Leukemia Study. In 2001–2007, we sampled carpets in the room where the child spent the most time while awake; we used a high-volume small-surface sampler or we took dust from the home vacuum. We measured concentrations of 14 PBDE congeners including penta (28, 47, 99, 100, 153, 154), octa (183, 196, 197, 203), and decaBDEs (206–209). Odds ratios (ORs) were calculated using logistic regression, adjusting for demographics, income, year of dust collection, and sampling method. Results: BDE-47, BDE-99, and BDE-209 were found at the highest concentrations (medians, 1,173, 1,579, and 938 ng/g, respectively). Comparing the highest to lowest quartile, we found no association with ALL for summed pentaBDEs (OR = 0.7; 95% CI: 0.4, 1.3), octaBDEs (OR = 1.3; 95% CI: 0.7, 2.3), or decaBDEs (OR = 1.0; 95% CI: 0.6, 1.8). Comparing homes in the highest concentration (nanograms per gram) tertile to those with no detections, we observed significantly increased ALL risk for BDE-196 (OR = 2.1; 95% CI: 1.1, 3.8), BDE-203 (OR = 2.0; 95% CI: 1.1, 3.6), BDE-206 (OR = 2.1; 95% CI: 1.1, 3.9), and BDE-207 (OR = 2.0; 95% CI: 1.03, 3.8). Conclusion: We found no association with ALL for common PBDEs, but we observed positive associations for specific octa and nonaBDEs. Additional studies with repeated sampling and biological measures would be informative. Citation: Ward MH, Colt JS, Deziel NC, Whitehead TP, Reynolds P, Gunier RB, Nishioka M, Dahl GV, Rappaport SM, Buffler PA, Metayer C. 2014. Residential levels of polybrominated diphenyl ethers and risk of childhood acute lymphoblastic leukemia in California. Environ Health Perspect 122:1110–1116; http://dx.doi.org/10.1289/ehp.1307602


Environmental Health Perspectives | 2015

A Review of Nonoccupational Pathways for Pesticide Exposure in Women Living in Agricultural Areas

Nicole C. Deziel; Melissa C. Friesen; Jane A. Hoppin; Cynthia J. Hines; Kent Thomas; Laura E. Beane Freeman

Background Women living in agricultural areas may experience high pesticide exposures compared with women in urban or suburban areas because of their proximity to farm activities. Objective Our objective was to review the evidence in the published literature for the contribution of nonoccupational pathways of pesticide exposure in women living in North American agricultural areas. Methods We evaluated the following nonoccupational exposure pathways: paraoccupational (i.e., take-home or bystander exposure), agricultural drift, residential pesticide use, and dietary ingestion. We also evaluated the role of hygiene factors (e.g., house cleaning, shoe removal). Results Among 35 publications identified (published 1995–2013), several reported significant or suggestive (p < 0.1) associations between paraoccupational (n = 19) and agricultural drift (n = 10) pathways and pesticide dust or biomarker levels, and 3 observed that residential use was associated with pesticide concentrations in dust. The 4 studies related to ingestion reported low detection rates of most pesticides in water; additional studies are needed to draw conclusions about the importance of this pathway. Hygiene factors were not consistently linked to exposure among the 18 relevant publications identified. Conclusions Evidence supported the importance of paraoccupational, drift, and residential use pathways. Disentangling exposure pathways was difficult because agricultural populations are concurrently exposed to pesticides via multiple pathways. Most evidence was based on measurements of pesticides in residential dust, which are applicable to any household member and are not specific to women. An improved understanding of nonoccupational pesticide exposure pathways in women living in agricultural areas is critical for studying health effects in women and for designing effective exposure-reduction strategies. Citation Deziel NC, Friesen MC, Hoppin JA, Hines CJ, Thomas K, Beane Freeman LE. 2015. A review of nonoccupational pathways for pesticide exposure in women living in agricultural areas. Environ Health Perspect 123:515–524; http://dx.doi.org/10.1289/ehp.1408273


Science of The Total Environment | 2012

Determinants of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in house dust samples from four areas of the United States

Nicole C. Deziel; John R. Nuckols; Joanne S. Colt; A.J. De Roos; Anjoeka Pronk; C. Gourley; Richard K. Severson; Wendy Cozen; James R. Cerhan; Patricia Hartge; Mary H. Ward

Determinants of levels of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) in dust in U.S. homes are not well characterized. We conducted a pilot study to evaluate the relationship between concentrations of PCDD/F in house dust and residential proximity to known sources, including industrial facilities and traffic. Samples from vacuum bag dust from homes of 40 residents of Detroit, Los Angeles, Seattle, or Iowa who participated in a population-based case-control study of non-Hodgkin lymphoma conducted in 1998-2000 were analyzed using high resolution gas chromatography/high resolution mass spectrometry for 7 PCDD and 10 PCDF congeners considered toxic by the U.S. Environmental Protection Agency (EPA). Locations of 10 types of PCDD/F-emitting facilities were obtained from the EPA; however only 4 types were located near study homes (non-hazardous waste cement kilns, coal-fired power plants, sewage sludge incinerators, and medical waste incinerators). Relationships between concentrations of each PCDD/F and proximity to industrial facilities, freight routes, and major roads were evaluated using separate multivariate regression models for each congener. The median (inter-quartile range [IQR]) toxic equivalence (TEQ) concentration of these congeners in the house dust was 20.3 pg/g (IQR=14.3, 32.7). Homes within 3 or 5 km of a cement kiln had 2 to 9-fold higher concentrations of 5 PCDD and 5 PCDF (p<0.1 in each model). Proximity to freight routes and major roads was associated with elevated concentrations of 1 PCDD and 8 PCDF. Higher concentrations of certain PCDD/F in homes near cement kilns, freight routes, and major roads suggest that these outdoor sources are contributing to indoor environmental exposures. Further study of the contribution of these sources and other facility types to total PCDD/F exposure in a larger number of homes is warranted.


Science of The Total Environment | 2017

Unconventional oil and gas development and risk of childhood leukemia: Assessing the evidence.

Elise G. Elliott; Pauline Trinh; Xiaomei Ma; Brian P. Leaderer; Mary H. Ward; Nicole C. Deziel

The widespread distribution of unconventional oil and gas (UO&G) wells and other facilities in the United States potentially exposes millions of people to air and water pollutants, including known or suspected carcinogens. Childhood leukemia is a particular concern because of the disease severity, vulnerable population, and short disease latency. A comprehensive review of carcinogens and leukemogens associated with UO&G development is not available and could inform future exposure monitoring studies and human health assessments. The objective of this analysis was to assess the evidence of carcinogenicity of water contaminants and air pollutants related to UO&G development. We obtained a list of 1177 chemicals in hydraulic fracturing fluids and wastewater from the U.S. Environmental Protection Agency and constructed a list of 143 UO&G-related air pollutants through a review of scientific papers published through 2015 using PubMed and ProQuest databases. We assessed carcinogenicity and evidence of increased risk for leukemia/lymphoma of these chemicals using International Agency for Research on Cancer (IARC) monographs. The majority of compounds (>80%) were not evaluated by IARC and therefore could not be reviewed. Of the 111 potential water contaminants and 29 potential air pollutants evaluated by IARC (119 unique compounds), 49 water and 20 air pollutants were known, probable, or possible human carcinogens (55 unique compounds). A total of 17 water and 11 air pollutants (20 unique compounds) had evidence of increased risk for leukemia/lymphoma, including benzene, 1,3-butadiene, cadmium, diesel exhaust, and several polycyclic aromatic hydrocarbons. Though information on the carcinogenicity of compounds associated with UO&G development was limited, our assessment identified 20 known or suspected carcinogens that could be measured in future studies to advance exposure and risk assessments of cancer-causing agents. Our findings support the need for investigation into the relationship between UO&G development and risk of cancer in general and childhood leukemia in particular.


Environmental Health | 2015

Associations between self-reported pest treatments and pesticide concentrations in carpet dust

Nicole C. Deziel; Joanne S. Colt; Erin E. Kent; Robert B. Gunier; Peggy Reynolds; Benjamin J. Booth; Catherine Metayer; Mary H. Ward

BackgroundRecent meta-analyses demonstrate an association between self-reported residential pesticide use and childhood leukemia risk. Self-reports may suffer from recall bias and provide information only on broad pesticide categories. We compared parental self-reported home and garden pest treatments to pesticides measured in carpet dust.MethodsParents of 277 children with leukemia and 306 controls in Northern and Central California (2001–2007) were asked about insect and weed treatments during the previous year. Carpet dust samples were analyzed for 47 pesticides. We present results for the 7 insecticides (carbaryl, propoxur, chlorpyrifos, diazinon, cyfluthrin, cypermethrin, permethrin), 5 herbicides (2,4-dichlorophenoxyacetic acid [2,4-D], chlorthal, dicamba, mecoprop, simazine), and 1 synergist (piperonyl butoxide) that were present in home and garden products during the study period and were detected in ≥25% of carpet dust samples. We constructed linear regression models for the relative change in pesticide concentrations associated with self-reported treatment of pest types in cases and controls separately and combined, adjusting for demographics, housing characteristics, and nearby agricultural pesticide applications.ResultsSeveral self-reported treatments were associated with pesticide concentrations in dust. For example, households with flea/tick treatments had 2.3 (95% Confidence Interval [CI]: 1.4, 3.7) times higher permethrin concentrations than households not reporting this treatment. Households reporting treatment for ants/cockroaches had 2.5 (95% CI: 1.5, 4.2) times higher cypermethrin levels than households not reporting this treatment. Weed treatment by a household member was associated with 1.9 (1.4, 2.6), 2.2 (1.6, 3.1), and 2.8 (2.1, 3.7) times higher dust concentrations of dicamba, mecoprop, and 2,4-D, respectively. Weed treatments by professional applicators were null/inversely associated with herbicide concentrations in dust. Associations were generally similar between cases and controls and were consistent with pesticide active ingredients in these products during the study time period.ConclusionsConsistency between self-reported pest treatments, concentrations in dust, and pesticides in products lends credibility to the exposure assessment methods and suggests that differential recall by case–control status is minimal.


Journal of Exposure Science and Environmental Epidemiology | 2013

A multi-day environmental study of polycyclic aromatic hydrocarbon exposure in a high-risk region for esophageal cancer in China

Nicole C. Deziel; Wen Qiang Wei; Christian C. Abnet; You-Lin Qiao; Deirdre Sunderland; Jian Song Ren; Michele M. Schantz; Yu Zhang; Paul T. Strickland; Salahaddin Abubaker; Sanford M. Dawsey; Melissa C. Friesen; Mark J. Roth

Linzhou, China has one of the highest rates of esophageal squamous cell carcinoma in the world. Exposure to carcinogenic polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (BaP), may have a role in this increased risk. To better understand PAH sources, we measured PAHs in the air and food of 20 non-smokers over multiple days and compared the concentrations with a urinary PAH biomarker, 1-hydroxypyrene glucuronide (1-OHPG). Sampling occurred over 4 consecutive days. Kitchen air samples (days 2–3) and duplicate diet samples (days 1–4) were analyzed for 14 or more unique PAHs, including BaP. Daily urine samples (days 1–3) were analyzed for 1-OHPG. Mixed-effects models were used to evaluate the associations between air or food PAH concentrations and urine 1-OHPG concentrations. The median kitchen air BaP concentration was 10.2 ng/m3 (interquartile range (IQR): 5.1–20.2 ng/m3). The median daily food BaP concentration and intake were 0.08 ng/g (IQR=0.04–0.16 ng/g) and 86 ng/day (IQR=41–142 ng/day), respectively. The median 1-OHPG concentration was 3.36 pmol/ml (IQR=2.09–6.98 pmol/ml). In mixed-effects models, 1-OHPG concentration increased with same-day concentration of food BaP (P=0.07). Although PAH concentrations in air were not associated with 1-OHPG concentrations, the high concentrations of PAHs in both air and food suggest that they are both important routes of exposure to PAHs in this population. Further evaluation of the role of PAH exposure from air and food in the elevated rates of esophageal cancer in this region is warranted.


American Journal of Public Health | 2014

Persistent Organic Pollutants in Dust From Older Homes: Learning From Lead

Todd P. Whitehead; Catherine Metayer; Mary H. Ward; Joanne S. Colt; Robert B. Gunier; Nicole C. Deziel; Stephen M. Rappaport; Patricia A. Buffler

OBJECTIVES We aimed to (1) evaluate the relation between home age and concentrations of multiple chemical contaminants in settled dust and (2) discuss the feasibility of using lead hazard controls to reduce childrens exposure to persistent organic pollutants. METHODS As part of the California Childhood Leukemia Study, from 2001 to 2007, we used a high-volume small surface sampler and household vacuum cleaners to collect dust samples from 583 homes and analyzed the samples for 94 chemicals with gas chromatography-mass spectrometry and inductively coupled plasma mass spectrometry. We evaluated relations between chemical concentrations in dust and home age with Spearman rank correlation coefficients. RESULTS Dust concentrations of lead, polychlorinated biphenyls, organochlorine insecticides, and polycyclic aromatic hydrocarbons were correlated with home age (ρ > 0.2; P < .001), whereas concentrations of pyrethroid insecticides and polybrominated diphenyl ethers were not. CONCLUSIONS Dust in older homes contains higher levels of multiple, persistent chemicals than does dust in newer homes. Further development of strategies to reduce chemical exposures for children living in older homes is warranted.


Environmental Science & Technology | 2013

Environmental determinants of polychlorinated biphenyl concentrations in residential carpet dust

Curt T. DellaValle; David C. Wheeler; Nicole C. Deziel; Anneclaire J. De Roos; James R. Cerhan; Wendy Cozen; Richard K. Severson; Abigail R. Flory; Sarah J. Locke; Joanne S. Colt; Patricia Hartge; Mary H. Ward

Polychlorinated biphenyls (PCBs), banned in the United Sates in the late 1970s, are still found in indoor and outdoor environments. Little is known about the determinants of PCB levels in homes. We measured concentrations of five PCB congeners (105, 138, 153, 170, and 180) in carpet dust collected between 1998 and 2000 from 1187 homes in four sites: Detroit, Iowa, Los Angeles, and Seattle. Home characteristics, occupational history, and demographic information were obtained by interview. We used a geographic information system to geocode addresses and determine distances to the nearest major road, freight route, and railroad; percentage of developed land; number of industrial facilities within 2 km of residences; and population density. Ordinal logistic regression was used to estimate the associations between the covariates of interest and the odds of PCB detection in each site separately. Total PCB levels [all congeners < maximum practical quantitation limit (MPQL) vs at least one congener ≥ MPQL to < median concentration vs at least one congener > median concentration] were positively associated with either percentage of developed land [odds ratio (OR) range 1.01-1.04 for each percentage increase] or population density (OR 1.08 for every 1000/mi(2)) in each site. The number of industrial facilities within 2 km of a home was associated with PCB concentrations; however, facility type and direction of the association varied by site. Our findings suggest that outdoor sources of PCBs may be significant determinants of indoor concentrations.


Environmental Health Perspectives | 2013

Temporal variability of pesticide concentrations in homes and implications for attenuation bias in epidemiologic studies.

Nicole C. Deziel; Mary H. Ward; Erin M. Bell; Todd P. Whitehead; Robert B. Gunier; Melissa C. Friesen; John R. Nuckols

Background: Residential pesticide exposure has been linked to adverse health outcomes in adults and children. High-quality exposure estimates are critical for confirming these associations. Past epidemiologic studies have used one measurement of pesticide concentrations in carpet dust to characterize an individual’s average long-term exposure. If concentrations vary over time, this approach could substantially misclassify exposure and attenuate risk estimates. Objectives: We assessed the repeatability of pesticide concentrations in carpet dust samples and the potential attenuation bias in epidemiologic studies relying on one sample. Methods: We collected repeated carpet dust samples (median = 3; range, 1–7) from 21 homes in Fresno County, California, during 2003–2005. Dust was analyzed for 13 pesticides using gas chromatography–mass spectrometry. We used mixed-effects models to estimate between- and within-home variance. For each pesticide, we computed intraclass correlation coefficients (ICCs) and the estimated attenuation of regression coefficients in a hypothetical case–control study collecting a single dust sample. Results: The median ICC was 0.73 (range, 0.37–0.95), demonstrating higher between-home than within-home variability for most pesticides. The expected magnitude of attenuation bias associated with using a single dust sample was estimated to be ≤ 30% for 7 of the 13 compounds evaluated. Conclusions: For several pesticides studied, use of one dust sample to represent an exposure period of approximately 2 years would not be expected to substantially attenuate odds ratios. Further study is needed to determine if our findings hold for longer exposure periods and for other pesticides.

Collaboration


Dive into the Nicole C. Deziel's collaboration.

Top Co-Authors

Avatar

Mary H. Ward

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joanne S. Colt

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Melissa C. Friesen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Nuckols

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry I. Graubard

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge