Nicole E. Buck
Royal Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicole E. Buck.
Brain | 2014
Heidi Peters; Nicole E. Buck; Jos P.N. Ruiter; Hans R. Waterham; Janet Koster; Joy Yaplito-Lee; Sacha Ferdinandusse; James Pitt
Two siblings with fatal Leigh disease had increased excretion of S-(2-carboxypropyl)cysteine and several other metabolites that are features of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency, a rare defect in the valine catabolic pathway associated with Leigh-like disease. However, this diagnosis was excluded by HIBCH sequencing and normal enzyme activity. In contrast to HIBCH deficiency, the excretion of 3-hydroxyisobutyryl-carnitine was normal in the children, suggesting deficiency of short-chain enoyl-CoA hydratase (ECHS1 gene). This mitochondrial enzyme is active in several metabolic pathways involving fatty acids and amino acids, including valine, and is immediately upstream of HIBCH in the valine pathway. Both children were compound heterozygous for a c.473C > A (p.A158D) missense mutation and a c.414+3G>C splicing mutation in ECHS1. ECHS1 activity was markedly decreased in cultured fibroblasts from both siblings, ECHS1 protein was undetectable by immunoblot analysis and transfection of patient cells with wild-type ECHS1 rescued ECHS1 activity. The highly reactive metabolites methacrylyl-CoA and acryloyl-CoA accumulate in deficiencies of both ECHS1 and HIBCH and are probably responsible for the brain pathology in both disorders. Deficiency of ECHS1 or HIBCH should be considered in children with Leigh disease. Urine metabolite testing can detect and distinguish between these two disorders.
Molecular Genetics and Metabolism | 2009
Nicole E. Buck; Leonie R. Wood; Ruimei Hu; Heidi Peters
A stop codon defect in methylmalonyl-CoA mutase (resulting in a truncated unstable protein) accounts for up to 14% of mutations identified as causes of Methylmalonic aciduria. There are currently limited treatment regimes for patients with this inherited condition. We aimed to investigate the use of stop codon read-through drugs in a genomic reporter assay cell line with a defect in the mutase gene. A single C-T base change was introduced into exon 6 of the human MUT sequence in the BAC clone RP11-463L20 resulting in an arginine residue being replaced with a TGA stop codon. An enhanced green fluorescent protein reporter gene was introduced in-frame with exon 13 of the MUT gene. The construct was transfected into HeLa cells to produce the genomic reporter assay cell line. To test the suppression of nonsense mutations, cells were incubated in the presence of different compounds for a period of 72 h then analysed by flow cytometry. Treatment of the cells with gentamicin resulted in a 1.6-fold increase in reporter protein, whilst G418 treatment resulted in no change, however the two drugs together acted synergistically to increase the production of methylmalonyl-CoA mutase 2.0-fold (confirmed by mRNA, flow cytometry and enzyme activity). Zidovudine, adefovir and cisplatin were also found to have some activity in the stop codon read-through genomic reporter assay. These results encourage further testing of compounds as well as follow up animal studies. This is the first study to demonstrate the use of stop codon read-through drugs for the potential treatment of Methylmalonic aciduria.
PLOS ONE | 2012
Heidi Peters; James Pitt; Leonie R. Wood; Natasha J. Hamilton; Joseph P. Sarsero; Nicole E. Buck
Methylmalonic aciduria (MMA) is a disorder of organic acid metabolism resulting from a functional defect of methylmalonyl-CoA mutase (MCM). MMA is associated with significant morbidity and mortality, thus therapies are necessary to help improve quality of life and prevent renal and neurological complications. Transgenic mice carrying an intact human MCM locus have been produced. Four separate transgenic lines were established and characterised as carrying two, four, five or six copies of the transgene in a single integration site. Transgenic mice from the 2-copy line were crossed with heterozygous knockout MCM mice to generate mice hemizygous for the human transgene on a homozygous knockout background. Partial rescue of the uniform neonatal lethality seen in homozygous knockout mice was observed. These rescued mice were significantly smaller than control littermates (mice with mouse MCM gene). Biochemically, these partial rescue mice exhibited elevated methylmalonic acid levels in urine, plasma, kidney, liver and brain tissue. Acylcarnitine analysis of blood spots revealed elevated propionylcarnitine levels. Analysis of mRNA expression confirms the human transgene is expressed at higher levels than observed for the wild type, with highest expression in the kidney followed closely by brain and liver. Partial rescue mouse fibroblast cultures had only 20% of the wild type MCM enzyme activity. It is anticipated that this humanised partial rescue mouse model of MMA will enable evaluation of long-term pathophysiological effects of elevated methylmalonic acid levels and be a valuable model for the investigation of therapeutic strategies, such as cell transplantation.
Biochemical and Biophysical Research Communications | 2012
Nicole E. Buck; Leonie R. Wood; Natasha J. Hamilton; Michael Bennett; Heidi Peters
There are limited treatment options for the metabolic disorder methylmalonic aciduria. The disorder can be caused by nonsense mutations within the methylmalonyl-CoA mutase gene, resulting in the production of a truncated protein with little or no catalytic activity. We used a genomic reporter assay and mouse primary cell lines which carry a stop-codon mutation in the human methylmalonyl-CoA mutase gene to test the effects of gentamicin and PTC124 for stop-codon read-through potential. Fibroblast cell lines were established from methylmalonic aciduria knockout-stop codon mice. Addition of gentamicin to the culture medium caused a 1.5- to 2-fold increase in mRNA expression of the human methylmalonyl-CoA mutase gene. Without treatment the cells contained 19% of the normal levels of methylmalonyl-CoA mutase enzyme activity which increased to 32% with treatment, suggesting a functional improvement. Treatment with PTC124 increased the amount of human methylmalonyl-CoA mutase gene mRNA by 1.6±0.3-fold and a trend suggesting increased enzyme activity. The genomic reporter assay, BAC_MMA(∗)EGFP, expresses enhanced green fluorescent protein when read-through of the stop codon occurs. Using flow cytometry, RT-real-time PCR and enzyme assay, read-through was measured. Treatment with PTC124 at 20μmol/L resulted in a significant increase in enhanced green fluorescent protein, a 2-fold increase in mRNA expression and a trend to a slight increase in enzyme activity. The clinical relevance of these effects may be tested in mouse models of MMA carrying nonsense mutations in the methylmalonyl-CoA mutase gene. Pharmacological approaches have the advantage of providing a broader effect on multiple tissues, which will benefit many different disorders with similar nonsense mutations.
Journal of Gene Medicine | 2009
Ruimei Hu; Nicole E. Buck; Mahmoud Shekari Khaniani; Leonie R. Wood; Hady Wardan; Jean-Francois Benoist; Lingli Li; Jim Vadolas; Joseph P. Sarsero; Panos A. Ioannou; Heidi Peters
Methylmalonic aciduria is an autosomal recessive inborn error of the propionate metabolic pathway. One form of this disorder is caused by mutations in methylmalonyl‐coenzyme A mutase (MCM), resulting in reduced levels of enzyme activity. The pharmacological up‐regulation of residual mutase activity is one approach to advance treatment strategies for individuals affected by this disorder. We describe the construction, characterization and use of a cellular genomic reporter assay for MCM expression that will potentially identify therapeutic pharmacological agents for methylmalonic aciduria treatment.
PLOS ONE | 2012
Nicole E. Buck; Harriet Dashnow; James Pitt; Leonie R. Wood; Heidi Peters
The mutation R403stop was found in an individual with mut0 methylmalonic aciduria (MMA) which resulted from a single base change of C→T in exon 6 of the methylmalonyl-CoA mutase gene (producing a TGA stop codon). In order to accurately model the human MMA disorder we introduced this mutation onto the human methylmalonyl-CoA mutase locus of a bacterial artificial chromosome. A mouse model was developed using this construct. The transgene was found to be intact in the mouse model, with 7 copies integrated at a single site in chromosome 3. The phenotype of the hemizygous mouse was unchanged until crossed against a methylmalonyl-CoA mutase knockout mouse. Pups with no endogenous mouse methylmalonyl-CoA mutase and one copy of the transgene became ill and died within 24 hours. This severe phenotype could be partially rescued by the addition of a transgene carrying two copies of the normal human methylmalonyl-CoA mutase locus. The “humanized” mice were smaller than control litter mates and had high levels of methylmalonic acid in their blood and tissues. This new transgenic MMA stop codon model mimics (at both the phenotypic and genotypic levels) the key features of the human MMA disorder. It will allow the trialing of pharmacological and, cell and gene therapies for the treatment of MMA and other human metabolic disorders caused by stop codon mutations.
Biochemical and Biophysical Research Communications | 2012
Nicole E. Buck; Samuel D. Pennell; Leonie R. Wood; James Pitt; Katrina J. Allen; Heidi Peters
Methylmalonic aciduria is a rare disorder caused by an inborn error of organic acid metabolism. Current treatment options are limited and generally focus on disease management. We aimed to investigate the use of fetal progenitor cells to treat this disorder using a mouse model with an intermediate form of methylmalonic aciduria. Fetal liver cells were isolated from healthy fetuses at embryonic day 15-17 and intravenously transplanted into sub-lethally irradiated mice. Liver donor cell engraftment was determined by PCR. Disease correction was monitored by urine and blood methylmalonic acid concentration and weight change. Initial studies indicated that pre-transplantation sub-lethal irradiation followed by transplantation with 5 million cells were suitable. We found that a double dose of 5 million cells (1 week apart) provided a more effective treatment. Donor cell liver engraftment of up to 5% was measured. Disease correction, as defined by a decrease in blood methylmalonic acid concentration, was effected in methylmalonic acid mice transplanted with a double dose of cells and who showed donor cell liver engraftment. Mean plasma methylmalonic acid concentration decreased from 810 ± 156 (sham transplanted) to 338 ± 157 μmol/L (double dose of 5 million cells) while mean blood C3 carnitine concentration decreased from 20.5 ± 4 (sham transplanted) to 5.3 ± 1.9 μmol/L (double dose of 5 million cells). In conclusion, higher levels of engraftment may be required for greater disease correction; however these studies show promising results for cell transplantation biochemical correction of a metabolic disorder.
Biometals | 2006
Katrina J. Allen; Nicole E. Buck; Daphne M. Y. Cheah; Sophie Gazeas; Prithi S. Bhathal; Julian F. B. Mercer
Transplant Immunology | 2005
Katrina J. Allen; Nicole E. Buck; Robert Williamson
Biometals | 2007
Daphne M. Y. Cheah; Yolanda J. Deal; Paul F. A. Wright; Nicole E. Buck; C. W. Chow; Julian F. B. Mercer; Katrina J. Allen