Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole F. Liachko is active.

Publication


Featured researches published by Nicole F. Liachko.


The Journal of Neuroscience | 2010

Phosphorylation promotes neurotoxicity in a Caenorhabditis elegans model of TDP-43 proteinopathy.

Nicole F. Liachko; Chris R. Guthrie; Brian C. Kraemer

Neurodegenerative disorders characterized by neuronal and glial lesions containing aggregated pathological TDP-43 protein in the cytoplasm, nucleus, or neurites are collectively referred to as TDP-43 proteinopathies. Lesions containing aggregated TDP-43 protein are a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). In addition, mutations in human TDP-43 cause ALS. We have developed a Caenorhabditis elegans model of TDP-43 proteinopathies to study the cellular, molecular, and genetic underpinnings of TDP-43-mediated neurotoxicity. Expression of normal human TDP-43 in all C. elegans neurons causes moderate motor defects, whereas ALS-mutant G290A, A315T, or M337V TDP-43 transgenes cause severe motor dysfunction. The model recapitulates some characteristic features of ALS and FTLD-U including age-induced decline in motor function, decreased life span, and degeneration of motor neurons accompanied by hyperphosphorylation, truncation, and ubiquitination of TDP-43 protein that accumulates in detergent-insoluble protein deposits. In C. elegans, TDP-43 neurotoxicity is independent of activity of the cell death caspase CED-3. Furthermore, phosphorylation of TDP-43 at serine residues 409/410 drives mutant TDP-43 toxicity. This model provides a tractable system for additional dissection of the cellular and molecular mechanisms underlying TDP-43 neuropathology.


Annals of Neurology | 2013

CDC7 inhibition blocks pathological TDP‐43 phosphorylation and neurodegeneration

Nicole F. Liachko; Pamela J. McMillan; Chris R. Guthrie; Bird Td; James B. Leverenz; Brian C. Kraemer

Kinase hyperactivity occurs in both neurodegenerative disease and cancer. Lesions containing hyperphosphorylated aggregated TDP‐43 characterize amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP‐43 inclusions. Dual phosphorylation of TDP‐43 at serines 409/410 (S409/410) drives neurotoxicity in disease models; therefore, TDP‐43–specific kinases are candidate targets for intervention.


Biological Psychiatry | 2013

Dopamine D2 Receptor Antagonism Suppresses Tau Aggregation and Neurotoxicity

Allyson V. McCormick; Jeanna M. Wheeler; Chris R. Guthrie; Nicole F. Liachko; Brian C. Kraemer

BACKGROUND Tauopathies, including Alzheimers disease and frontotemporal dementia, are diseases characterized by the formation of pathological tau protein aggregates in the brain and progressive neurodegeneration. Presently no effective disease-modifying treatments exist for tauopathies. METHODS To identify drugs targeting tau neurotoxicity, we have used a Caenorhabditis elegans model of tauopathy to screen a drug library containing 1120 compounds approved for human use for the ability to suppress tau-induced behavioral effects. RESULTS One compound, the typical antipsychotic azaperone, improved the motility of tau transgenic worms, reduced levels of insoluble tau, and was protective against neurodegeneration. We found that azaperone reduces insoluble tau in a human cell culture model of tau aggregation and that other antipsychotic drugs (flupenthixol, perphenazine, and zotepine) also ameliorate the effects of tau expression in both models. CONCLUSIONS Reduction of dopamine signaling through the dopamine D2 receptor with the use of gene knockouts in Caenorhabditis elegans or RNA interference knockdown in human cell culture has similar protective effects against tau toxicity. These results suggest dopamine D2 receptor antagonism holds promise as a potential neuroprotective strategy for targeting tau aggregation and neurotoxicity.


Journal of Medicinal Chemistry | 2014

Protein kinase CK-1 inhibitors as new potential drugs for amyotrophic lateral sclerosis

Irene G. Salado; Miriam Redondo; Murilo L. Bello; Concepción Pérez; Nicole F. Liachko; Brian C. Kraemer; Laetitia Miguel; Magalie Lecourtois; Carmen Gil; Ana Martinez; Daniel I. Perez

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease where motor neurons in cortex, brain stem, and spinal cord die progressively, resulting in muscle wasting, paralysis, and death. Currently, effective therapies for ALS are lacking; however, identification of pathological TAR DNA-binding protein 43 (TDP-43) as the hallmark lesion in sporadic ALS suggests new therapeutic targets for pharmacological intervention. Pathological TDP-43 phosphorylation appears to drive the onset and progression of ALS and may result from upregulation of the protein kinase CK-1 in affected neurons, resulting in postranslational TDP-43 modification. Consequently, brain penetrant specific CK-1 inhibitors may provide a new therapeutic strategy for treating ALS and other TDP-43 proteinopathies. Using a chemical genetic approach, we report the discovery and further optimization of a number of potent CK-1δ inhibitors. Moreover, these small heterocyclic molecules are able to prevent TDP-43 phosphorylation in cell cultures, to increase Drosophila lifespan by reduction of TDP-43 neurotoxicity, and are predicted to cross the blood–brain barrier. Thus, N-(benzothiazolyl)-2-phenyl-acetamides are valuable drug candidates for further studies and may be a new therapeutic approach for ALS and others pathologies in which TDP-43 is involved.


PLOS Genetics | 2014

The tau tubulin kinases TTBK1/2 promote accumulation of pathological TDP-43.

Nicole F. Liachko; Pamela J. McMillan; Timothy J. Strovas; Elaine Loomis; Lynne Greenup; Jill R. Murrell; Bernardino Ghetti; Murray A. Raskind; Thomas J. Montine; Bird Td; James B. Leverenz; Brian C. Kraemer

Pathological aggregates of phosphorylated TDP-43 characterize amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), two devastating groups of neurodegenerative disease. Kinase hyperactivity may be a consistent feature of ALS and FTLD-TDP, as phosphorylated TDP-43 is not observed in the absence of neurodegeneration. By examining changes in TDP-43 phosphorylation state, we have identified kinases controlling TDP-43 phosphorylation in a C. elegans model of ALS. In this kinome-wide survey, we identified homologs of the tau tubulin kinases 1 and 2 (TTBK1 and TTBK2), which were also identified in a prior screen for kinase modifiers of TDP-43 behavioral phenotypes. Using refined methodology, we demonstrate TTBK1 and TTBK2 directly phosphorylate TDP-43 in vitro and promote TDP-43 phosphorylation in mammalian cultured cells. TTBK1/2 overexpression drives phosphorylation and relocalization of TDP-43 from the nucleus to cytoplasmic inclusions reminiscent of neuropathologic changes in disease states. Furthermore, protein levels of TTBK1 and TTBK2 are increased in frontal cortex of FTLD-TDP patients, and TTBK1 and TTBK2 co-localize with TDP-43 inclusions in ALS spinal cord. These kinases may represent attractive targets for therapeutic intervention for TDP-43 proteinopathies such as ALS and FTLD-TDP.


Progress in Neurobiology | 2016

TDP-43/FUS in motor neuron disease: Complexity and challenges.

Erika N. Guerrero; Haibo Wang; Joy Mitra; Pavana M. Hegde; Sara E. Stowell; Nicole F. Liachko; Brian C. Kraemer; Ralph M. Garruto; K.S. Rao; Muralidhar L. Hegde

Amyotrophic lateral sclerosis (ALS), a common motor neuron disease affecting two per 100,000 people worldwide, encompasses at least five distinct pathological subtypes, including, ALS-SOD1, ALS-C9orf72, ALS-TDP-43, ALS-FUS and Guam-ALS. The etiology of a major subset of ALS involves toxicity of the TAR DNA-binding protein-43 (TDP-43). A second RNA/DNA binding protein, fused in sarcoma/translocated in liposarcoma (FUS/TLS) has been subsequently associated with about 1% of ALS patients. While mutations in TDP-43 and FUS have been linked to ALS, the key contributing molecular mechanism(s) leading to cell death are still unclear. One unique feature of TDP-43 and FUS pathogenesis in ALS is their nuclear clearance and simultaneous cytoplasmic aggregation in affected motor neurons. Since the discoveries in the last decade implicating TDP-43 and FUS toxicity in ALS, a majority of studies have focused on their cytoplasmic aggregation and disruption of their RNA-binding functions. However, TDP-43 and FUS also bind to DNA, although the significance of their DNA binding in disease-affected neurons has been less investigated. A recent observation of accumulated genomic damage in TDP-43 and FUS-linked ALS and association of FUS with neuronal DNA damage repair pathways indicate a possible role of deregulated DNA binding function of TDP-43 and FUS in ALS. In this review, we discuss the different ALS disease subtypes, crosstalk of etiopathologies in disease progression, available animal models and their limitations, and recent advances in understanding the specific involvement of RNA/DNA binding proteins, TDP-43 and FUS, in motor neuron diseases.


The Journal of Neuroscience | 2015

Loss of RAD-23 Protects Against Models of Motor Neuron Disease by Enhancing Mutant Protein Clearance

Angela M. Jablonski; Todd Lamitina; Nicole F. Liachko; Mariangela Sabatella; Jiayin Lu; Lei Zhang; Lyle W. Ostrow; Preetika Gupta; Chia Yen Wu; Shachee Doshi; Jelena Mojsilovic-Petrovic; Hannes Lans; Jiou Wang; Brian C. Kraemer; Robert G. Kalb

Misfolded proteins accumulate and aggregate in neurodegenerative disease. The existence of these deposits reflects a derangement in the protein homeostasis machinery. Using a candidate gene screen, we report that loss of RAD-23 protects against the toxicity of proteins known to aggregate in amyotrophic lateral sclerosis. Loss of RAD-23 suppresses the locomotor deficit of Caenorhabditis elegans engineered to express mutTDP-43 or mutSOD1 and also protects against aging and proteotoxic insults. Knockdown of RAD-23 is further neuroprotective against the toxicity of SOD1 and TDP-43 expression in mammalian neurons. Biochemical investigation indicates that RAD-23 modifies mutTDP-43 and mutSOD1 abundance, solubility, and turnover in association with altering the ubiquitination status of these substrates. In human amyotrophic lateral sclerosis spinal cord, we find that RAD-23 abundance is increased and RAD-23 is mislocalized within motor neurons. We propose a novel pathophysiological function for RAD-23 in the stabilization of mutated proteins that cause neurodegeneration. SIGNIFICANCE STATEMENT In this work, we identify RAD-23, a component of the protein homeostasis network and nucleotide excision repair pathway, as a modifier of the toxicity of two disease-causing, misfolding-prone proteins, SOD1 and TDP-43. Reducing the abundance of RAD-23 accelerates the degradation of mutant SOD1 and TDP-43 and reduces the cellular content of the toxic species. The existence of endogenous proteins that act as “anti-chaperones” uncovers new and general targets for therapeutic intervention.


Scientific Reports | 2018

Sertraline, Paroxetine, and Chlorpromazine Are Rapidly Acting Anthelmintic Drugs Capable of Clinical Repurposing.

Janis C. Weeks; William M. Roberts; Caitlyn Leasure; Brian M. Suzuki; Kristin J. Robinson; Heather N. Currey; Phurpa Wangchuk; Ramon M. Eichenberger; Aleen D. Saxton; Bird Td; Brian C. Kraemer; Alex Loukas; John M. Hawdon; Conor R. Caffrey; Nicole F. Liachko

Parasitic helminths infect over 1 billion people worldwide, while current treatments rely on a limited arsenal of drugs. To expedite drug discovery, we screened a small-molecule library of compounds with histories of use in human clinical trials for anthelmintic activity against the soil nematode Caenorhabditis elegans. From this screen, we found that the neuromodulatory drugs sertraline, paroxetine, and chlorpromazine kill C. elegans at multiple life stages including embryos, developing larvae and gravid adults. These drugs act rapidly to inhibit C. elegans feeding within minutes of exposure. Sertraline, paroxetine, and chlorpromazine also decrease motility of adult Trichuris muris whipworms, prevent hatching and development of Ancylostoma caninum hookworms and kill Schistosoma mansoni flatworms, three widely divergent parasitic helminth species. C. elegans mutants with resistance to known anthelmintic drugs such as ivermectin are equally or more susceptible to these three drugs, suggesting that they may act on novel targets to kill worms. Sertraline, paroxetine, and chlorpromazine have long histories of use clinically as antidepressant or antipsychotic medicines. They may represent new classes of anthelmintic drug that could be used in combination with existing front-line drugs to boost effectiveness of anti-parasite treatment as well as offset the development of parasite drug resistance.


Molecular Neurodegeneration | 2018

Pathological phosphorylation of tau and TDP-43 by TTBK1 and TTBK2 drives neurodegeneration

Laura M. Taylor; Pamela J. McMillan; Nicole F. Liachko; Timothy J. Strovas; Bernardino Ghetti; Bird Td; C. Dirk Keene; Brian C. Kraemer

BackgroundProgressive neuron loss in the frontal and temporal lobes of the cerebral cortex typifies frontotemporal lobar degeneration (FTLD). FTLD sub types are classified on the basis of neuronal aggregated protein deposits, typically containing either aberrantly phosphorylated TDP-43 or tau. Our recent work demonstrated that tau tubulin kinases 1 and 2 (TTBK1/2) robustly phosphorylate TDP-43 and co-localize with phosphorylated TDP-43 in human postmortem neurons from FTLD patients. Both TTBK1 and TTBK2 were initially identified as tau kinases and TTBK1 has been shown to phosphorylate tau epitopes commonly observed in Alzheimer’s disease and other tauopathies.MethodsTo further elucidate how TTBK1/2 activity contributes to both TDP-43 and tau phosphorylation in the context of the neurodegeneration seen in FTLD, we examined the consequences of elevated human TTBK1/2 kinase expression in transgenic animal models of disease.ResultsWe show that C. elegans co-expressing tau/TTBK1 tau/TTBK2, or TDP-43/TTBK1 transgenes in combination exhibit synergistic exacerbation of behavioral abnormalities and increased pathological protein phosphorylation. We also show that C. elegans co-expressing tau/TTBK1 or tau/TTBK2 transgenes in combination exhibit aberrant neuronal architecture and neuron loss. Surprisingly, the TTBK2/TDP-43 transgenic combination showed no exacerbation of TDP-43 proteinopathy related phenotypes. Additionally, we observed elevated TTBK1/2 protein expression in cortical and hippocampal neurons of FTLD-tau and FTLD-TDP cases relative to normal controls.ConclusionsOur findings suggest a possible etiology for the two most common FTLD subtypes through a kinase activation driven mechanism of neurodegeneration.


Acta Neuropathologica | 2016

The phosphatase calcineurin regulates pathological TDP-43 phosphorylation

Nicole F. Liachko; Aleen D. Saxton; Pamela J. McMillan; Timothy J. Strovas; Heather N. Currey; Laura M. Taylor; Jeanna M. Wheeler; Adrian L. Oblak; Bernardino Ghetti; Thomas J. Montine; C. Dirk Keene; Murray A. Raskind; Bird Td; Brian C. Kraemer

Collaboration


Dive into the Nicole F. Liachko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bird Td

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Dirk Keene

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge