Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole Holzmann is active.

Publication


Featured researches published by Nicole Holzmann.


Nature Chemistry | 2010

Synthesis of a stable adduct of dialane(4) (Al2H4) via hydrogenation of a magnesium(I) dimer

Simon J. Bonyhady; David Collis; Gernot Frenking; Nicole Holzmann; Cameron Jones; Andreas Stasch

The desorption of dihydrogen from magnesium(II) hydride, MgH2 (containing 7.6 wt% H), is reversible. MgH2 therefore holds promise as a hydrogen storage material in devices powered by fuel cells. We believed that dimeric magnesium(I) dimers (LMgMgL, L=β-diketiminate) could find use as soluble models to aid the study of the mechanisms and/or kinetics of the hydrogenation of magnesium and its alloys. Here, we show that LMgMgL can be readily hydrogenated to yield LMg(µ-H)2MgL by treatment with aluminium(III) hydride complexes. In one case, hydrogenation was reversed by treating LMg(µ-H)2MgL with potassium metal. The hydrogenation by-products are the first thermally stable, neutral aluminium(II) hydride complexes to be produced, one of which, [{(IPr)(H)2Al}2] (IPr=:C[{(C6H3-i-Pr(2)-2,6)NCH}2]), is an N-heterocyclic carbene adduct of the elusive parent dialane4 (Al2H4). A computational analysis of this compound is presented.


Chemistry: A European Journal | 2011

Structures and Stabilities of Group 13 Adducts [(NHC)(EX3)] and [(NHC)2(E2Xn)] (E=B to In; X=H, Cl; n=4, 2, 0; NHC=N‐Heterocyclic Carbene) and the Search for Hydrogen Storage Systems: A Theoretical Study

Nicole Holzmann; Andreas Stasch; Cameron Jones; Gernot Frenking

Quantum chemical calculations using density functional theory at the BP86/TZVPP level and ab initio calculations at the SCS-MP2/TZVPP level have been carried out for the group 13 complexes [(NHC)(EX(3))] and [(NHC)(2)(E(2)X(n))] (E=B to In; X=H, Cl; n=4, 2, 0; NHC=N-heterocyclic carbene). The monodentate Lewis acids EX(3) and the bidentate Lewis acids E(2) X(n) bind N-heterocyclic carbenes rather strongly in donor-acceptor complexes [(NHC)(EX(3))] and [(NHC)(2)(E(2)X(n))]. The equilibrium structures of the bidentate complexes depend on the electronic reference state of E(2)X(n), which may vary for different atoms E and X. All complexes [(NHC)(2)(E(2)X(4))] possess C(s) symmetry in which the NHC ligands bind in a trans conformation to the group 13 atoms E. The complexes [(NHC)(2)(E(2)H(2))] with E=B, Al, Ga have also C(s) symmetry with a trans arrangement of the NHC ligands and a planar CE(H)E(H)C moiety that has a E=E π bond. In contrast, the indium complex [(NHC)(2)(In(2) H(2))] has C(i) symmetry with pyramidal-coordinated In atoms in which the hydrogen atoms are twisted above and below the CInInC plane. The latter C(i) form is calculated for all chloride systems [(NHC)(2)(E(2)Cl(2))], but the boron complex [(NHC)(2)(B(2)Cl(2))] deviates only slightly from C(s) symmetry. The B(2) fragment in the linear coordinated complex [(NHC)(2)(B(2))] has a highly excited (3)(1)Σ(g)(-) reference state, which gives an effective B≡B triple bond with a very short interatomic distance. The heavier homologues [(NHC)(2)(E(2))] (E=Al to In) exhibit a anti-periplanar arrangement of the NHC ligands in which the E(2) fragments have a (1)(1) Δ(g) reference state and an E=E double bond. The calculated energies suggest that the dihydrogen release from the complexes [(NHC)(EH(3))] and [(NHC)(2)(E(2)H(n))] becomes energetically more favourable when atom E becomes heavier. The indium complexes should therefore be the best candidates of the investigated series for hydrogen-storage systems that could potentially deliver dihydrogen at close to ambient temperature. The hydrogenation reaction of the dimeric magnesium(I) compound [LMgMgL] (L=β-diketiminate) with [(NHC)(EH(3))] becomes increasingly exothermic with the trend B


Inorganic Chemistry | 2011

Preparation, Characterization, and Theoretical Analysis of Group 14 Element(I) Dimers: A Case Study of Magnesium(I) Compounds as Reducing Agents in Inorganic Synthesis

Cameron Jones; Simon J. Bonyhady; Nicole Holzmann; Gernot Frenking; Andreas Stasch

A synthetic route to the new amidine (DipNH)(DipN)C(C(6)H(4)Bu(t)-4) (ButisoH; Dip = C(6)H(3)Pr(i)(2)-2,6) has been developed. Its deprotonation with either LiBu(n) or KN(SiMe(3))(2) yields the amidinate complexes [M(Butiso)] (M = Li or K). Their reactions with group 14 element halides/pseudohalides afford the heteroleptic group 14 complexes [(Butiso)SiCl(3)], [(Butiso)ECl] (E = Ge or Sn), and [{(Butiso)Pb(μ-O(3)SCF(3))(THF)}(∞)], all of which have been crystallographically characterized. In addition, the synthesis and spectroscopic characterization of the homoleptic complex [Pb(Butiso)(2)] is reported. Reductions of the heteroleptic complexes with a soluble magnesium(I) dimer, [{((Mes)Nacnac)Mg}(2)] ((Mes)Nacnac = [(MesNCMe)(2)CH](-); Mes = mesityl), have given moderate-to-high yields of the group 14 element(I) dimers [{(Butiso)E}(2)] (E = Si, Ge, or Sn), the X-ray crystallographic studies of which reveal trans-bent structures. The corresponding lead(I) complex could not be prepared. Comprehensive spectroscopic and theoretical analyses of [{(Butiso)E}(2)] have allowed their properties to be compared. All complexes possess E-E single bonds and can be considered as intramolecularly base-stabilized examples of ditetrelynes, REER. Taken as a whole, this study highlights the synthetic utility of soluble and easy to prepare magnesium(I) dimers as valuable alternatives to the harsh, and often insoluble, alkali-metal reducing agents that are currently widely employed in the synthesis of low-oxidation-state organometallic/inorganic complexes.


Science | 2012

A Boron-Boron Triple Bond

Gernot Frenking; Nicole Holzmann

A complex with a boron-boron triple bond expands the range of genuine triple bonds known to chemists. Although carbon readily forms double and even triple bonds, such bonds are much rarer between the heavier elements of the same group or between atoms of other main groups of the periodic system. Chemists have succeeded in creating some such molecules, such as double-bonded silicon compounds, although they are usually highly reactive. On page 1420 of this issue, Braunschweig et al. (1) report the synthesis of one such highly unusual chemical compound, which has a boron-boron triple bond.


Journal of the American Chemical Society | 2014

One-electron-mediated rearrangements of 2,3-disiladicarbene.

Kartik Chandra Mondal; Prinson P. Samuel; Herbert W. Roesky; Rinat R. Aysin; Larissa A. Leites; Sven Neudeck; Jens Lübben; Birger Dittrich; Nicole Holzmann; Markus Hermann; Gernot Frenking

A disiladicarbene, (Cy-cAAC)2Si2 (2), was synthesized by reduction of Cy-cAAC:SiCl4 adduct with KC8. The dark-colored compound 2 is stable at room temperature for a year under an inert atmosphere. Moreover, it is stable up to 190 °C and also can be characterized by electron ionization mass spectrometry. Theoretical and Raman studies reveal the existence of a Si═Si double bond with a partial double bond between each carbene carbon atom and silicon atom. Cyclic voltammetry suggests that 2 can quasi-reversibly accept an electron to produce a very reactive radical anion, 2(•-), as an intermediate species. Thus, reduction of 2 with potassium metal at room temperature led to the isolation of an isomeric neutral rearranged product and an anionic dimer of a potassium salt via the formation of 2(•-).


Journal of Molecular Biology | 2011

Congeneric but still distinct: how closely related trypsin ligands exhibit different thermodynamic and structural properties

Tobias Brandt; Nicole Holzmann; Laveena Muley; Maan Khayat; Christof Wegscheid-Gerlach; Bernhard Baum; Andreas Heine; David G. Hangauer; Gerhard Klebe

A congeneric series of benzamidine-type ligands with a central proline moiety and a terminal cycloalkyl group--linked by a secondary amine, ether, or methylene bridge--was synthesized as trypsin inhibitors. This series of inhibitors was investigated by isothermal titration calorimetry, crystal structure analysis in two crystal forms, and molecular dynamics simulations. Even though all of these congeneric ligands exhibited essentially the same affinity for trypsin, their binding profiles at the structural, dynamic, and thermodynamic levels are very distinct. The ligands display a pronounced enthalpy/entropy compensation that results in a nearly unchanged free energy of binding, even though individual enthalpy and entropy terms change significantly across the series. Crystal structures revealed that the secondary amine-linked analogs scatter over two distinct conformational families of binding modes that occupy either the inside or of the outside the proteins S3/S4 specificity pocket. In contrast, the ether-linked and methylene-linked ligands preferentially occupy the hydrophobic specificity pocket. This also explains why the latter ligands could only be crystallized in the conformationally restricting closed crystal form whereas the derivative with the highest residual mobility in the series escaped our attempts to crystallize it in the closed form; instead, a well-resolved structure could only be achieved in the open form with the ligand in disordered orientation. These distinct binding modes are supported by molecular dynamics simulations and correlate with the shifting enthalpic/entropic signatures of ligand binding. The examples demonstrate that, at the molecular level, binding modes and thermodynamic binding signatures can be very different even for closely related ligands. However, deviating binding profiles provide the opportunity to optimally address a given target.


Chemical Science | 2015

The boron–boron triple bond in NHC→BB←NHC

Nicole Holzmann; Markus Hermann; Gernot Frenking

Quantum chemical calculations of the compound B2(NHCMe)2 and a thorough examination of the electronic structure with an energy decomposition analysis provide strong evidence for the appearance of boron–boron triple bond character. This holds for the model compound and for the isolated diboryne B2(NHCR)2 of Braunschweig which has an even slightly shorter B–B bond. The bonding situation in the molecule is best described in terms of NHCMe→B2←NHCMe donor–acceptor interactions and concomitant π-backdonation NHCMe←B2→NHCMe which weakens the B–B bond, but the essential features of a triple bond are preserved. An appropriate formula which depicts both interactions is the sketch NHCMe⇄BB⇄NHCMe. Calculations of the stretching force constants FBB which take molecules that have genuine single, double and triple bonds as references suggest that the effective bond order of B2(NHCMe)2 has the value of 2.34. The suggestion by Koppe and Schnockel that the strength of the boron–boron bond in B2(NHCH)2 is only between a single and a double bond is repudiated. It misleadingly takes the force constant FBB of OBBO as the reference value for a B–B single bond which ignores π bonding contributions. The alleged similarity between the B–O bonds in OBBO and the B–C bonds in B2(NHCMe)2 is a mistaken application of the principle of isolable relationship.


Journal of the American Chemical Society | 2013

Formation of a 1,4-Diamino-2,3-disila-1,3-butadiene Derivative

Kartik Chandra Mondal; Herbert W. Roesky; Birger Dittrich; Nicole Holzmann; Markus Hermann; Gernot Frenking; Alke Meents

A 1,4-diamino-2,3-disila-1,3-butadiene derivative of composition (Me2-cAAC)2(Si2Cl2) (Me2-cAAC = :C(CMe2)2(CH2)N-2,6-iPr2C6H3) was synthesized by reduction of the Me2-cAAC:SiCl4 adduct with KC8. This compound is stable at 0 °C for 3 months in an inert atmosphere. Theoretical studies reveal that the silicon atoms exhibit pyramidal coordination, where the Cl-Si-Si-Cl dihedral angle is twisted by 43.3° (calcd 45.9°). The two silicon-carbon bonds are intermediates between single and double Si-C bonds due to twisting of the C-Si-Si-C dihedral angle (163.6°).


Beilstein Journal of Organic Chemistry | 2015

Direct estimate of the internal π-donation to the carbene centre within N-heterocyclic carbenes and related molecules

Diego M. Andrada; Nicole Holzmann; Thomas Hamadi; Gernot Frenking

Summary Fifteen cyclic and acylic carbenes have been calculated with density functional theory at the BP86/def2-TZVPP level. The strength of the internal X→p(π) π-donation of heteroatoms and carbon which are bonded to the C(II) atom is estimated with the help of NBO calculations and with an energy decomposition analysis. The investigated molecules include N-heterocyclic carbenes (NHCs), the cyclic alkyl(amino)carbene (cAAC), mesoionic carbenes and ylide-stabilized carbenes. The bonding analysis suggests that the carbene centre in cAAC and in diamidocarbene have the weakest X→p(π) π-donation while mesoionic carbenes possess the strongest π-donation.


Chemistry: A European Journal | 2015

The fate of NHC-stabilized dicarbon.

Dayne C. Georgiou; Bradley D. Stringer; Conor F. Hogan; Peter J. Barnard; David J. D. Wilson; Nicole Holzmann; Gernot Frenking; Jason L. Dutton

The attempted synthesis of NHC-stabilized dicarbon (NHC=C=C=NHC) through deprotonation of a doubly protonated precursor ([NHC-CH=CH-NHC](2+) ) is reported. Rather than deprotonation, a clean reduction to NHC=CH-CH=NHC is observed with a variety of bases. The apparent resistance towards deprotonation to the target compound led to a reinvestigation of the electronic structure of NHC→CC←NHC, which showed that the highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) gap is likely too small to allow for isolation of this species. This is in contrast to the recent isolation of the cyclic alkylaminocarbene analogue (cAAC=C=C=cAAC), which has a large HOMO-LUMO gap. A detailed theoretical study illuminates the differences in electronic structures between these molecules, highlighting another case of the potential advantages of using cAAC rather than NHC as a ligand. The bonding analysis suggests that the dicarbon compounds are well represented in terms of donor-acceptor interactions L→C2 ←L (L=NHC, cAAC).

Collaboration


Dive into the Nicole Holzmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonardo Bernasconi

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge