Nicole Howe
Trinity College, Dublin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicole Howe.
Nature | 2015
Yanyong Kang; X. Edward Zhou; Xiang Gao; Yuanzheng He; Wei Liu; Andrii Ishchenko; Anton Barty; Thomas A. White; Oleksandr Yefanov; Gye Won Han; Qingping Xu; Parker W. de Waal; Jiyuan Ke; M. H.Eileen Tan; Chenghai Zhang; Arne Moeller; Graham M. West; Bruce D. Pascal; Ned Van Eps; Lydia N. Caro; Sergey A. Vishnivetskiy; Regina J. Lee; Kelly Suino-Powell; Xin Gu; Kuntal Pal; Jinming Ma; Xiaoyong Zhi; Sébastien Boutet; Garth J. Williams; Marc Messerschmidt
G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin–arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.
Nature Communications | 2014
Uwe Weierstall; Daniel James; Chong Wang; Thomas A. White; Dingjie Wang; Wei Liu; John C. Spence; R. Bruce Doak; Garrett Nelson; Petra Fromme; Raimund Fromme; Ingo Grotjohann; Christopher Kupitz; Nadia A. Zatsepin; Haiguang Liu; Shibom Basu; Daniel Wacker; Gye Won Han; Vsevolod Katritch; Sébastien Boutet; Marc Messerschmidt; Garth J. Williams; Jason E. Koglin; M. Marvin Seibert; Markus Klinker; Cornelius Gati; Robert L. Shoeman; Anton Barty; Henry N. Chapman; Richard A. Kirian
Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.
Nature Methods | 2015
Tobias Weinert; Vincent Olieric; Sandro Waltersperger; Ezequiel Panepucci; Lirong Chen; Hua Zhang; Dayong Zhou; John P. Rose; Akio Ebihara; Seiki Kuramitsu; Dianfan Li; Nicole Howe; Gisela Schnapp; Alexander Pautsch; Katja Bargsten; Andrea E. Prota; Parag Surana; Jithesh Kottur; Deepak T. Nair; Federica Basilico; Valentina Cecatiello; Andreas Boland; Oliver Weichenrieder; Bi-Cheng Wang; Michel O. Steinmetz; Martin Caffrey; Meitian Wang
We describe a data collection method that uses a single crystal to solve X-ray structures by native SAD (single-wavelength anomalous diffraction). We solved the structures of 11 real-life examples, including a human membrane protein, a protein-DNA complex and a 266-kDa multiprotein-ligand complex, using this method. The data collection strategy is suitable for routine structure determination and can be implemented at most macromolecular crystallography synchrotron beamlines.
Crystal Growth & Design | 2014
Dianfan Li; Nicole Howe; Abhiram Dukkipati; Syed T. A. Shah; Benjamin D. Bax; Colin M. Edge; Angela Bridges; Phil Hardwicke; Onkar M. P. Singh; Ged Giblin; Alexander Pautsch; Roland Pfau; Gisela Schnapp; Meitian Wang; Vincent Olieric; Martin Caffrey
The lipidic mesophase or in meso method for crystallizing membrane proteins has several high profile targets to its credit and is growing in popularity. Despite its success, the method is in its infancy as far as rational crystallogenesis is concerned. Consequently, significant time, effort, and resources are still required to generate structure-grade crystals, especially with a new target type. Therefore, a need exists for crystallogenesis protocols that are effective with a broad range of membrane protein types. Recently, a strategy for crystallizing a prokaryotic α-helical membrane protein, diacylglycerol kinase (DgkA), by the in meso method was reported (Cryst. Growth. Des.2013, 13, 2846−2857). Here, we describe its application to the human α-helical microsomal prostaglandin E2 synthase 1 (mPGES1). While the DgkA strategy proved useful, significant modifications were needed to generate structure-quality crystals of this important therapeutic target. These included protein engineering, using an additive phospholipid in the hosting mesophase, performing multiple rounds of salt screening, and carrying out trials at 4 °C in the presence of a tight binding ligand. The crystallization strategy detailed here should prove useful for generating structures of other integral membrane proteins by the in meso method.
Acta Crystallographica Section D-biological Crystallography | 2016
Chia-Ying Huang; Vincent Olieric; Pikyee Ma; Nicole Howe; Lutz Vogeley; Xiangyu Liu; Rangana Warshamanage; Tobias Weinert; Ezequiel Panepucci; Brian K. Kobilka; Kay Diederichs; Meitian Wang; Martin Caffrey
A method for performing high-throughput in situ serial X-ray crystallography with soluble and membrane proteins in the lipid cubic phase at cryogenic temperatures (100 K) is described. It works with nanogram to single-digit microgram quantities of protein and lipid (and ligand when present), and is compatible with both high-resolution native data collection and experimental phasing without the need for crystal harvesting.
Philosophical Transactions of the Royal Society B | 2014
Martin Caffrey; Dianfan Li; Nicole Howe; Syed T. A. Shah
The lipid-based bicontinuous cubic mesophase is a nanoporous membrane mimetic with applications in areas that include medicine, personal care products, foods and the basic sciences. An application of particular note concerns it use as a medium in which to grow crystals of membrane proteins for structure determination by X-ray crystallography. At least two variations of the mesophase exist. One is the highly viscous cubic phase, which has well developed long-range order. The other so-called sponge phase is considerably more fluid and lacks long-range order. The sponge phase has recently been shown to be a convenient vehicle for delivering microcrystals of membrane proteins to an X-ray free-electron laser beam for serial femtosecond crystallography (SFX). Unfortunately, the sponge phase approach calls for large amounts of protein that are not always available in the case of membrane proteins. The cubic phase offers the advantage of requiring significantly less protein for SFX but comes with its own challenges. Here, we describe the physico-chemical bases for these challenges, solutions to them and prospects for future uses of lipidic mesophases in the SFX arena.
Nature Communications | 2015
Dianfan Li; Phillip J. Stansfeld; Mark S. P. Sansom; Aaron Keogh; Lutz Vogeley; Nicole Howe; Joseph A. Lyons; David Aragão; Petra Fromme; Raimund Fromme; Shibom Basu; Ingo Grotjohann; Christopher Kupitz; Kimberley Rendek; Uwe Weierstall; Nadia A. Zatsepin; Vadim Cherezov; Wei Liu; Sateesh Bandaru; Niall J. English; Cornelius Gati; Anton Barty; Oleksandr Yefanov; Henry N. Chapman; Kay Diederichs; Marc Messerschmidt; Sébastien Boutet; Garth J. Williams; M. Marvin Seibert; Martin Caffrey
Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution.
Nature Communications | 2017
Maciej Wiktor; Dietmar Weichert; Nicole Howe; Chia-Ying Huang; Vincent Olieric; Coilín Boland; Jonathan Bailey; Lutz Vogeley; Phillip J. Stansfeld; Nienke Buddelmeijer; Meitian Wang; Martin Caffrey
Lipoproteins serve essential roles in the bacterial cell envelope. The posttranslational modification pathway leading to lipoprotein synthesis involves three enzymes. All are potential targets for the development of new antibiotics. Here we report the crystal structure of the last enzyme in the pathway, apolipoprotein N-acyltransferase, Lnt, responsible for adding a third acyl chain to the lipoprotein’s invariant diacylated N-terminal cysteine. Structures of Lnt from Pseudomonas aeruginosa and Escherichia coli have been solved; they are remarkably similar. Both consist of a membrane domain on which sits a globular periplasmic domain. The active site resides above the membrane interface where the domains meet facing into the periplasm. The structures are consistent with the proposed ping-pong reaction mechanism and suggest plausible routes by which substrates and products enter and leave the active site. While Lnt may present challenges for antibiotic development, the structures described should facilitate design of therapeutics with reduced off-target effects.
Nature Communications | 2018
Meriem El Ghachi; Nicole Howe; Chia-Ying Huang; Vincent Olieric; Rangana Warshamanage; Thierry Touzé; Dietmar Weichert; Phillip J. Stansfeld; Meitian Wang; Fred Kerff; Martin Caffrey
As a protective envelope surrounding the bacterial cell, the peptidoglycan sacculus is a site of vulnerability and an antibiotic target. Peptidoglycan components, assembled in the cytoplasm, are shuttled across the membrane in a cycle that uses undecaprenyl-phosphate. A product of peptidoglycan synthesis, undecaprenyl-pyrophosphate, is converted to undecaprenyl-phosphate for reuse in the cycle by the membrane integral pyrophosphatase, BacA. To understand how BacA functions, we determine its crystal structure at 2.6 Å resolution. The enzyme is open to the periplasm and to the periplasmic leaflet via a pocket that extends into the membrane. Conserved residues map to the pocket where pyrophosphorolysis occurs. BacA incorporates an interdigitated inverted topology repeat, a topology type thus far only reported in transporters and channels. This unique topology raises issues regarding the ancestry of BacA, the possibility that BacA has alternate active sites on either side of the membrane and its possible function as a flippase.Bacterial cell wall components are assembled in a transmembrane cycle that involves the membrane integral pyrophosphorylase, BacA. Here the authors solve the crystal structure of BacA which shows an interdigitated inverted topology repeat that hints towards a flippase function for BacA.
Journal of Applied Crystallography | 2014
Martin Caffrey; Robert W. Eifert; Dianfan Li; Nicole Howe
The lipid cubic phase or in meso method can be used to set up crystallization trials of soluble and membrane proteins. The cubic phase is noted for being a sticky and viscous mesophase. Dispensing the protein-laden mesophase by hand into wells on crystallization plates has been facilitated by the use of an inexpensive repeat dispenser. However, the assembled dispensing device is prone to damage. Specifically, the delicate plunger used to dispense the viscous mesophase by positive displacement can be bent and scarred when the locking nut that fixes the plunger to the ratchet-driven dispensing mechanism is inadvertently overtightened. A defective plunger can render the device useless as a dispensing tool. More importantly, it can lead to catastrophic loss of valuable protein and lipid due to leakage when the dispensing syringe is being recharged with fresh mesophase. This note describes two types of bushings designed to protect the plunger from mechanical damage, which provide facile and reliable dispenser performance. One is a split bushing in brass and is a highly durable solution. The other is a small sleeve made from readily available plastic tubing. While it lacks durability, the plastic sleeve is simple yet highly effective, and can be replaced as the need arises.