Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole L. Fry is active.

Publication


Featured researches published by Nicole L. Fry.


Inorganic Chemistry | 2011

Designed iron carbonyls as carbon monoxide (CO) releasing molecules: rapid CO release and delivery to myoglobin in aqueous buffer, and vasorelaxation of mouse aorta.

Margarita A. Gonzalez; Nicole L. Fry; Richard Burt; Riddhi Davda; Adrian J. Hobbs; Pradip K. Mascharak

The physiological roles of CO in neurotransmission, vasorelaxation, and cytoprotective activities have raised interest in the design and syntheses of CO-releasing materials (CORMs) that could be employed to modulate such biological pathways. Three iron-based CORMs, namely, [(PaPy(3))Fe(CO)](ClO(4)) (1), [(SBPy(3))Fe(CO)](BF(4))(2) (2), and [(Tpmen)Fe(CO)](ClO(4))(2) (3), derived from designed polypyridyl ligands have been synthesized and characterized by spectroscopy and X-ray crystallography. In these three Fe(II) carbonyls, the CO is trans to a carboxamido-N (in 1), an imine-N (in 2), and a tertiary amine-N (in 3), respectively. This structural feature has been correlated to the strength of the Fe-CO bond. The CO-releasing properties of all three carbonyls have been studied in various solvents under different experimental conditions. Rapid release of CO is observed with 2 and 3 upon dissolution in both aqueous and nonaqueous media in the presence and absence of dioxygen. With 1, CO release is observed only under aerobic conditions, and the final product is an oxo-bridged diiron species while with 2 and 3, the solvent bound [(L)Fe(CO)](2+) (where L = SBPy(3) or Tpmen) results upon loss of CO under both aerobic and anaerobic conditions. The apparent rates of CO loss by these CORMs are comparable to other CORMs such as [Ru(glycine)(CO)(3)Cl] reported recently. Facile delivery of CO to reduced myoglobin has been observed with both 2 and 3. In tissue bath experiments, 2 and 3 exhibit rapid vasorelaxation of mouse aorta muscle rings. Although the relaxation effect is not inhibited by the soluble guanylate cyclase inhibitor ODQ, significant inhibition is observed with the BK(Ca) channel blocker iberiotoxin.


Inorganic Chemistry | 2010

Ruthenium Nitrosyls Derived from Tetradentate Ligands Containing Carboxamido-N and Phenolato-O Donors: Syntheses, Structures, Photolability, and Time Dependent Density Functional Theory Studies

Nicole L. Fry; Michael J. Rose; David L. Rogow; Crystal Nyitray; Manpreet Kaur; Pradip K. Mascharak

In order to examine the role(s) of designed ligands on the NO photolability of {Ru-NO}(6) nitrosyls, a set of three nitrosyls with ligands containing two carboxamide groups along with a varying number of phenolates have been synthesized. The nitrosyls namely, (NEt(4))(2)[(hybeb)Ru(NO)(OEt)] (1), (PPh(4))[(hypyb)Ru(NO)(OEt)] (2), and [(bpb)Ru(NO)(OEt)] (3) have been characterized by X-ray crystallography. Complexes 1-3 are diamagnetic, exhibit nu(NO) in the range 1780-1840 cm(-1) and rapidly release NO in solution upon exposure to low power UV light (7 mW/cm(2)). Density Functional Theory (DFT) and Time Dependent DFT (TDDFT) calculations on 1-3 indicate considerable contribution of ligand orbitals in the MOs involved in transitions leading to NO photolability. The results of the theoretical studies match well with the experimental absorption spectra as well as the parameters for NO photorelease and provide insight into the transition(s) associated with loss of NO.


Inorganic Chemistry | 2011

Triggered dye release via photodissociation of nitric oxide from designed ruthenium nitrosyls: turn-ON fluorescence signaling of nitric oxide delivery.

Nicole L. Fry; Julia Wei; Pradip K. Mascharak

Two new fluorescein-tethered nitrosyls derived from designed tetradentate ligands with carboxamido-N donors have been synthesized and characterized by spectroscopic techniques. These two diamagnetic {Ru-NO}(6) nitrosyls, namely, [(Me(2)bpb)Ru(NO)(FlEt)] (1-FlEt, Me(2)bpb = 1,2-bis(pyridine-2-carboxamido)5-dimethylbenzene, FlEt = fluorescein ethyl ester) and [((OMe)(2)IQ1)Ru(NO)(FlEt)] (2-FlEt, (OMe)(2)IQ1 = 1,2-bis(isoquinoline-1-carboxamido)-4,5-dimethoxybenzene), display NO stretching frequencies (ν(NO)) at 1846 and 1832 cm(-1) in addition to their FlEt carbonyl stretching frequencies (ν(CO)) at 1715 and 1712 cm(-1), respectively. Coordination of the dye ligand enhances the absorptivity and NO photolability of these two nitrosyls in the visible region (450-600 nm) of light. Exposure to visible light promotes rapid loss of NO from both {Ru-NO}(6) nitrosyls to generate Ru(III) photoproducts in dry aprotic solvents, such as MeCN and DMF. The FlEt(-) moiety remains bound to the paramagnetic Ru(III) center in such cases, and hence, the photoproducts exhibit very weak fluorescence from the dye unit. In the presence of water, the Ru(III) photoproducts undergo further aquation and loss of the FlEt(-) moiety via protonation. These steps lead to turn-ON fluorescence (from the free FlEt unit) and provide a visual signal of the NO photorelease from 1-FlEt and 2-FlEt in aqueous media.


Inorganic Chemistry | 2011

Dye-tethered ruthenium nitrosyls containing planar dicarboxamide tetradentate N4 ligands: effects of in-plane ligand twist on NO photolability.

Nicole L. Fry; Brandon J. Heilman; Pradip K. Mascharak

To examine the steric effects of the in-plane ligands in dye-sensitized {RuNO}(6) nitrosyls on their NO photolability, two new ligands, namely, 1,2-Bis(pyridine-2-carboxamido)-4,5-dimethoxybenzene (H(2)(OMe)(2)bpb) and 1,2-Bis(Isoquinoline-1-carboxamido)-4,5-dimethoxybenzene (H(2)(OMe)(2)IQ1, Hs are dissociable carboxamide protons) have been designed and synthesized. The syntheses and spectroscopic properties of {RuNO}(6) nitrosyls derived from these two ligands, namely, [((OMe)(2)bpb)Ru(NO)(Cl)] (4-Cl), [((OMe)(2)IQ1)Ru(NO)(Cl)] (5-Cl), [((OMe)(2)bpb)Ru(NO)(Resf)] (4-Resf), and [((OMe)(2)IQ1)Ru(NO)(Resf)] (5-Resf), are reported. The structures of 5-Cl, 4-Resf, and 5-Resf have been determined by X-ray crystallography. Removal of the in-plane ligand twist in the quinoline-based R(2)bQb(2-) ligand frame (because of steric interactions between the extended quinoline ring systems) in both R(2)bpb(2-) and R(2)IQ1(2-) (pyridine and 1-isoquinoline rings, respectively, instead of quinoline rings in the equatorial plane) results in enhanced solution stability, as well as higher quantum yield values for NO photorelease upon exposure to 500 nm light. Both dye-tethered {RuNO}(6) nitrosyls 4-Resf and 5-Resf exhibit greater sensitivity to visible light compared to the chloro-bound species 4-Cl and 5-Cl. In addition, the dye-tethered nitrosyls are fluorescent and hence can be used as trackable NO donors in cellular studies.


Inorganic Chemistry | 2011

Mechanism of NO photodissociation in photolabile manganese-NO complexes with pentadentate N5 ligands.

Anna C. Merkle; Nicole L. Fry; Pradip K. Mascharak; Nicolai Lehnert

The Mn-nitrosyl complexes [Mn(PaPy(3))(NO)](ClO(4)) (1; PaPy(3)(-) = N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide) and [Mn(PaPy(2)Q)(NO)](ClO(4)) (2, PaPy(2)Q(-) = N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-quinoline-2-carboxamide) show a remarkable photolability of the NO ligand upon irradiation of the complexes with UV-vis-NIR light [Eroy-Reveles, A. A.; Leung, Y.; Beavers, C. M.; Olmstead, M. M.; Mascharak, P. K. J. Am. Chem. Soc. 2008, 130, 4447]. Here we report detailed spectroscopic and theoretical studies on complexes 1 and 2 that provide key insight into the mechanism of NO photolabilization in these compounds. IR- and FT-Raman spectroscopy show N-O and Mn-NO stretching frequencies in the 1720-1750 and 630-650 cm(-1) range, respectively, for these Mn-nitrosyls. The latter value for ν(Mn-NO) is one of the highest transition-metal-NO stretching frequencies reported to this date, indicating that the Mn-NO bond is very strong in these complexes. The electronic structure of 1 and 2 is best described as Mn(I)-NO(+), where the Mn(I) center is in the diamagnetic low-spin state and the NO(+) ligand forms two very strong π backbonds with the d(xz) and d(yz) orbitals of the metal. This explains the very strong Mn-NO bonds observed in these complexes, which even supersede the strengths of the Fe- and Ru-NO bonds in analogous (isoelectronic) Fe/Ru(II)-NO(+) complexes. Using time-dependent density functional theory (TD-DFT) calculations, we were able to assign the electronic spectra of 1 and 2, and to gain key insight into the mechanism of NO photorelease in these complexes. Upon irradiation in the UV region, NO is released because of the direct excitation of d(π)_π* → π*_d(π) charge transfer (CT) states (direct mechanism), which is similar to analogous NO adducts of Ru(III) and Fe(III) complexes. These are transitions from the Mn-NO bonding (d(π)_π*) into the Mn-NO antibonding (π*_d(π)) orbitals within the Mn-NO π backbond. Since these transitions lead to the population of Mn-NO antibonding orbitals, they promote the photorelease of NO. In the case of 1 and 2, further transitions with distinct d(π)_π* → π*_d(π) CT character are observed in the 450-500 nm spectral range, again promoting photorelease of NO. This is confirmed by resonance Raman spectroscopy, showing strong resonance enhancement of the Mn-NO stretch at 450-500 nm excitation. The extraordinary photolability of the Mn-nitrosyls upon irradiation in the vis-NIR region is due to the presence of low-lying d(xy) → π*_d(π) singlet and triplet excited states. These have zero oscillator strengths, but can be populated by initial excitation into d(xy) → L(Py/Q_π*) CT transitions between Mn and the coligand, followed by interconversion into the d(xy) → π*_d(π) singlet excited states. These show strong spin-orbit coupling with the analogous d(xy) → π*_d(π) triplet excited states, which promotes intersystem crossing. TD-DFT shows that the d(xy) → π*_d(π) triplet excited states are indeed found at very low energy. These states are strongly Mn-NO antibonding in nature, and hence, promote dissociation of the NO ligand (indirect mechanism). The Mn-nitrosyls therefore show the long sought-after potential for easy tunability of the NO photorelease properties by simple changes in the coligand.


Archives of Biochemistry and Biophysics | 2013

A light-activated NO donor attenuates anchorage independent growth of cancer cells: Important role of a cross talk between NO and other reactive oxygen species

Suvajit Sen; Brian Kawahara; Nicole L. Fry; Robin Farias-Eisner; Dalia Zhang; Pradip K. Mascharak; Gautam Chaudhuri

It is established that high concentrations of nitric oxide(1) (NO), as released from activated macrophages, induce apoptosis in breast cancer cells. In this study, we assessed the potential of a light-activated NO donor [(Me2bpb)Ru(NO)(Resf)], a recently reported apoptototic agent, in suppressing the anchorage independent growth potentials of an aggressive human breast cancer cell line. Our results demonstrated the down regulation of anchorage independent growth by light activated NO treatment in the aggressive human breast cancer cell line MDA-MB-231 and afforded insight into the associated mechanism(s). The investigation revealed an up-regulation of the bioactivity of catalase with an accompanied reduction in the endogenous levels of H2O2, a direct substrate of catalase and a recently identified endogenous growth modulator in breast cancer cells. An earlier publication reported that endogenous superoxide (O2(-)) in human breast cancer cells constitutively inhibits catalase bioactivity (at the level of its protein), resulting in increased H2O2 levels. Interestingly in this study, O2(-) was also found to be down- regulated following NO treatment providing a basis for the observed increase in catalase bioactivity. Cells silenced for the catalase gene exhibited compromised reduction in anchorage independent growth upon light activated NO treatment. Collectively this study detailed a mechanistic cross talk between exogenous NO and endogenous ROS in attenuating anchorage independent growth.


Accounts of Chemical Research | 2011

Photoactive Ruthenium Nitrosyls as NO Donors: How To Sensitize Them toward Visible Light

Nicole L. Fry; Pradip K. Mascharak


Journal of the American Chemical Society | 2008

Sensitization of Ruthenium Nitrosyls to Visible Light via Direct Coordination of the Dye Resorufin: Trackable NO Donors for Light-Triggered NO Delivery to Cellular Targets

Michael J. Rose; Nicole L. Fry; Rebecca Marlow; Lindsay Hinck; Pradip K. Mascharak


Inorganic Chemistry | 2012

Syntheses, Structures, and Properties of New Manganese Carbonyls as Photoactive CO-Releasing Molecules: Design Strategies That Lead to CO Photolability in the Visible Region

Margarita A. Gonzalez; Samantha J. Carrington; Nicole L. Fry; Jose L. Martinez; Pradip K. Mascharak


Dalton Transactions | 2012

Photolability of NO in designed metal nitrosyls with carboxamido-N donors: a theoretical attempt to unravel the mechanism

Nicole L. Fry; Pradip K. Mascharak

Collaboration


Dive into the Nicole L. Fry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Rose

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Kawahara

University of California

View shared research outputs
Top Co-Authors

Avatar

Dalia Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

David L. Rogow

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lindsay Hinck

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge