Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole L. Solimini is active.

Publication


Featured researches published by Nicole L. Solimini.


Science | 2007

ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage

Shuhei Matsuoka; Bryan A. Ballif; Agata Smogorzewska; E. Robert McDonald; Kristen E. Hurov; Ji Luo; Corey E. Bakalarski; Zhenming Zhao; Nicole L. Solimini; Yaniv Lerenthal; Yosef Shiloh; Steven P. Gygi; Stephen J. Elledge

Cellular responses to DNA damage are mediated by a number of protein kinases, including ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related). The outlines of the signal transduction portion of this pathway are known, but little is known about the physiological scope of the DNA damage response (DDR). We performed a large-scale proteomic analysis of proteins phosphorylated in response to DNA damage on consensus sites recognized by ATM and ATR and identified more than 900 regulated phosphorylation sites encompassing over 700 proteins. Functional analysis of a subset of this data set indicated that this list is highly enriched for proteins involved in the DDR. This set of proteins is highly interconnected, and we identified a large number of protein modules and networks not previously linked to the DDR. This database paints a much broader landscape for the DDR than was previously appreciated and opens new avenues of investigation into the responses to DNA damage in mammals.


Cell | 2009

Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction

Ji Luo; Nicole L. Solimini; Stephen J. Elledge

Cancer is a complex collection of distinct genetic diseases united by common hallmarks. Here, we expand upon the classic hallmarks to include the stress phenotypes of tumorigenesis. We describe a conceptual framework of how oncogene and non-oncogene addictions contribute to these hallmarks and how they can be exploited through stress sensitization and stress overload to selectively kill cancer cells. In particular, we present evidence for a large class of non-oncogenes that are essential for cancer cell survival and present attractive drug targets. Finally, we discuss the path ahead to therapeutic discovery and provide theoretical considerations for combining orthogonal cancer therapies.


Science | 2008

Cancer Proliferation Gene Discovery Through Functional Genomics

Michael R. Schlabach; Ji Luo; Nicole L. Solimini; Guang Hu; Qikai Xu; Mamie Z. Li; Zhenming Zhao; Agata Smogorzewska; Mathew E. Sowa; Xiaolu L. Ang; Thomas F. Westbrook; Anthony C. Liang; Kenneth Chang; Jennifer A. Hackett; J. Wade Harper; Gregory J. Hannon; Stephen J. Elledge

Retroviral short hairpin RNA (shRNA)–mediated genetic screens in mammalian cells are powerful tools for discovering loss-of-function phenotypes. We describe a highly parallel multiplex methodology for screening large pools of shRNAs using half-hairpin barcodes for microarray deconvolution. We carried out dropout screens for shRNAs that affect cell proliferation and viability in cancer cells and normal cells. We identified many shRNAs to be antiproliferative that target core cellular processes, such as the cell cycle and protein translation, in all cells examined. Moreover, we identified genes that are selectively required for proliferation and survival in different cell lines. Our platform enables rapid and cost-effective genome-wide screens to identify cancer proliferation and survival genes for target discovery. Such efforts are complementary to the Cancer Genome Atlas and provide an alternative functional view of cancer cells.


Cell | 2007

Non-Oncogene Addiction and the Stress Phenotype of Cancer Cells

Nicole L. Solimini; Ji Luo; Stephen J. Elledge

Heat-shock factor 1 (HSF1) is a transcription factor that is activated upon proteotoxic stress and coordinates induction of the heat-shock response. In this issue, Dai et al. (2007) show that HSF1 is a potent modifier of tumorigenesis and is required for tumor initiation and maintenance in a variety of cancer models. These findings add HSF1 to a growing list of non-oncogenes that could be exploited as cancer drug targets.


Science | 2012

A SUMOylation-Dependent Transcriptional Subprogram Is Required for Myc-Driven Tumorigenesis

Jessica D. Kessler; Kristopher T. Kahle; Tingting Sun; Kristen L. Meerbrey; Michael R. Schlabach; Earlene M. Schmitt; Samuel O. Skinner; Qikai Xu; Mamie Z. Li; Zachary C. Hartman; Mitchell Rao; Peng Yu; Rocio Dominguez-Vidana; Anthony C. Liang; Nicole L. Solimini; Ronald J. Bernardi; Bing Yu; Tiffany Hsu; Ido Golding; Ji Luo; C. Kent Osborne; Chad J. Creighton; Susan G. Hilsenbeck; Rachel Schiff; Chad A. Shaw; Stephen J. Elledge; Thomas F. Westbrook

Taking the Myc Despite nearly 30 years of research into the mechanisms by which Myc oncogene dysregulation contributes to tumorigenesis, there are still no effective therapies that inhibit Myc activity. Kessler et al. (p. 348, published online 8 December; see the Perspective by Evan) searched for gene products that support Myc-driven tumorigenesis. One pharmacologically tractable target that emerged from the screen was the SUMO-activating enzyme complex SAE1/2, which catalyzes a posttranslational modification (SUMOylation) that alters protein behavior and function. SUMOylation was found to control the Myc transcriptional response, and its inhibition caused mitotic defects and apoptosis in Myc-dependent breast cancer cells. An RNA interference screen identifies a “druggable” enzyme whose inhibition halts tumor cell growth. Myc is an oncogenic transcription factor frequently dysregulated in human cancer. To identify pathways supporting the Myc oncogenic program, we used a genome-wide RNA interference screen to search for Myc–synthetic lethal genes and uncovered a role for the SUMO-activating enzyme (SAE1/2). Loss of SAE1/2 enzymatic activity drives synthetic lethality with Myc. Inactivation of SAE2 leads to mitotic catastrophe and cell death upon Myc hyperactivation. Mechanistically, SAE2 inhibition switches a transcriptional subprogram of Myc from activated to repressed. A subset of these SUMOylation-dependent Myc switchers (SMS genes) is required for mitotic spindle function and to support the Myc oncogenic program. SAE2 is required for growth of Myc-dependent tumors in mice, and gene expression analyses of Myc-high human breast cancers suggest that low SAE1 and SAE2 abundance in the tumors correlates with longer metastasis-free survival of the patients. Thus, inhibition of SUMOylation may merit investigation as a possible therapy for Myc-driven human cancers.


Science | 2012

Recurrent Hemizygous Deletions in Cancers May Optimize Proliferative Potential

Nicole L. Solimini; Qikai Xu; Craig H. Mermel; Anthony C. Liang; Michael R. Schlabach; Ji Luo; Anna E. Burrows; Anthony N. Anselmo; Andrea L. Bredemeyer; Mamie Z. Li; Rameen Beroukhim; Matthew Meyerson; Stephen J. Elledge

Cancer Gene Islands Human tumors are riddled with genomic alterations that rearrange, remove, amplify, or otherwise disrupt a wide spectrum of genes, and a key challenge is identifying which of these alterations are causally involved in tumorigenesis. The role of recurrent hemizygous focal deletions is especially puzzling because these deletions preferentially affect certain chromosomal regions and result in the loss of one copy of a whole cluster of adjacent genes. Solimini et al. (p. 104, published online 24 May; see the Perspective by Greenman) found that these deletions span genomic regions that are enriched in genes that negatively regulate cell proliferation. The cumulative reduction in dosage and tumor suppressive function of the genes within these “cancer gene islands” may represent a critical factor driving tumor growth. The genomes of cancer cells have preferentially lost genes that inhibit cell growth. Tumors exhibit numerous recurrent hemizygous focal deletions that contain no known tumor suppressors and are poorly understood. To investigate whether these regions contribute to tumorigenesis, we searched genetically for genes with cancer-relevant properties within these hemizygous deletions. We identified STOP and GO genes, which negatively and positively regulate proliferation, respectively. STOP genes include many known tumor suppressors, whereas GO genes are enriched for essential genes. Analysis of their chromosomal distribution revealed that recurring deletions preferentially overrepresent STOP genes and underrepresent GO genes. We propose a hypothesis called the cancer gene island model, whereby gene islands encompassing high densities of STOP genes and low densities of GO genes are hemizygously deleted to maximize proliferative fitness through cumulative haploinsufficiencies. Because hundreds to thousands of genes are hemizygously deleted per tumor, this mechanism may help to drive tumorigenesis across many cancer types.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial anoikis and morphogenesis

Tobias Schmelzle; Arnaud Mailleux; Michael Overholtzer; Jason S. Carroll; Nicole L. Solimini; Ole P. Veiby; Joan S. Brugge

The formation of a lumen in three-dimensional mammary epithelial acinar structures in vitro involves selective apoptosis of centrally localized cells that lack matrix attachment. Similarly, apoptosis is induced by forced detachment of mammary epithelial cells from matrix, a process referred to as anoikis. Through microarray analysis, we found that mRNA levels of the proapoptotic BH3-only protein Bmf are up-regulated during both anoikis and acinar morphogenesis. Importantly, down-regulation of Bmf expression by small interfering RNAs is sufficient to prevent anoikis and acinar cell death and promote anchorage-independent growth to a similar extent as down-regulation of another BH3-only protein, Bim, which was previously shown to be required for these processes. Knockdown of the BH3-only proteins Bad or Bid does not suppress anoikis or luminal apoptosis or promote anchorage-independent growth, but protects from other defined apoptotic stimuli, indicating specificity of BH3-only function. Bmf mRNA is significantly up-regulated upon loss of matrix attachment or disruption of the actin cytoskeleton, but not in response to several other stresses. Interestingly, constitutive activation of the Mek/Erk or phosphatidylinositol 3-kinase/Akt pathways suppresses the transcriptional up-regulation of Bmf during anoikis. Thus, Bmf is a central mediator of anoikis in mammary cells and a target of oncogenes that contribute to the progression of glandular epithelial tumors. Finally, Bmf is expressed during involution of the mouse mammary gland, suggesting that Bmf may also critically contribute to developmental processes in vivo.


Nature Biotechnology | 2011

Autoantigen discovery with a synthetic human peptidome

H. Benjamin Larman; Zhenming Zhao; Uri Laserson; Mamie Z. Li; Alberto Ciccia; M. Angelica Martinez Gakidis; George M. Church; Santosh Kesari; Emily LeProust; Nicole L. Solimini; Stephen J. Elledge

Immune responses targeting self-proteins (autoantigens) can lead to a variety of autoimmune diseases. Identification of these antigens is important for both diagnostic and therapeutic reasons. However, current approaches to characterize autoantigens have, in most cases, met only with limited success. Here we present a synthetic representation of the complete human proteome, the T7 peptidome phage display library (T7-Pep), and demonstrate its application to autoantigen discovery. T7-Pep is composed of >413,000 36-residue, overlapping peptides that cover all open reading frames in the human genome, and can be analyzed using high-throughput DNA sequencing. We developed a phage immunoprecipitation sequencing (PhIP-Seq) methodology to identify known and previously unreported autoantibodies contained in the spinal fluid of three individuals with paraneoplastic neurological syndromes. We also show how T7-Pep can be used more generally to identify peptide-protein interactions, suggesting the broader utility of our approach for proteomic research.Immune responses targeting self-proteins (autoantigens) can lead to a variety of autoimmune diseases. Identification of these antigens is important for both diagnostic and therapeutic reasons. However, current approaches to characterize autoantigens have, in most cases, met only with limited success. Here we present a synthetic representation of the complete human proteome, the T7 peptidome phage display library (T7-Pep), and demonstrate its application to autoantigen discovery. T7-Pep is composed of >413,000 36-residue, overlapping peptides that cover all open reading frames in the human genome, and can be analyzed using high-throughput DNA sequencing. We developed a phage immunoprecipitation sequencing (PhIP-Seq) methodology to identify known and previously unreported autoantibodies contained in the spinal fluid of three individuals with paraneoplastic neurological syndromes. We also show how T7-Pep can be used more generally to identify peptide-protein interactions, suggesting the broader utility of our approach for proteomic research.


Science Signaling | 2012

Akt and ERK Control the Proliferative Response of Mammary Epithelial Cells to the Growth Factors IGF-1 and EGF Through the Cell Cycle Inhibitor p57Kip2

Devin Worster; Tobias Schmelzle; Nicole L. Solimini; Bjorn Millard; Gordon B. Mills; Joan S. Brugge; John G. Albeck

The cell cycle inhibitor p57 is induced by Akt but suppressed by ERK to control growth factor–induced proliferation and limit oncogenic behavior. Checks and Balances Growth factors stimulate various downstream pathways to engage the cell cycle and promote cell proliferation. Two of these pathways, the Akt pathway and the ERK pathway, are commonly used as indicators of proliferative or oncogenic signaling. Noting that the Akt and ERK pathways not only can sometimes act synergistically with each other but also can suppress each other’s signaling, Worster et al. explored their involvement in the proliferative response to insulin, insulin-like growth factor 1 (IGF-1), and epidermal growth factor (EGF). Insulin or IGF-1 failed to stimulate the proliferation of mammary epithelial cells independently of EGF but enhanced the response to EGF, whereas EGF stimulated proliferation in the absence of insulin or IGF-1. Activation of the Akt pathway in the absence of ERK activity by IGF-1 or insulin led to an increase in the abundance of the cell cycle inhibitor p57 and proliferative arrest. Concurrent ERK signaling suppressed this increase in p57, enabling proliferation to occur, and p57 depletion enabled IGF-1–induced proliferation in the absence of EGF. Thus, p57 acted as a network sensor capable of detecting and limiting the proliferative response to aberrant signaling states in which the Akt pathway was activated in isolation. Epithelial cells respond to growth factors including epidermal growth factor (EGF), insulin-like growth factor 1 (IGF-1), and insulin. Using high-content immunofluorescence microscopy, we quantitated differences in signaling networks downstream of EGF, which stimulated proliferation of mammary epithelial cells, and insulin or IGF-1, which enhanced the proliferative response to EGF but did not stimulate proliferation independently. We found that the abundance of the cyclin-dependent kinase inhibitors p21Cip1 and p57Kip2 increased in response to IGF-1 or insulin but decreased in response to EGF. Depletion of p57Kip2, but not p21Cip1, rendered IGF-1 or insulin sufficient to induce cellular proliferation in the absence of EGF. Signaling through the PI3K (phosphatidylinositol 3-kinase)–Akt–mTOR (mammalian target of rapamycin) pathway was necessary and sufficient for the increase in p57Kip2, whereas MEK [mitogen-activated or extracellular signal–regulated protein kinase (ERK) kinase]–ERK activity suppressed this increase, forming a regulatory circuit that limited proliferation in response to unaccompanied Akt activity. Knockdown of p57Kip2 enhanced the proliferative phenotype induced by tumor-associated PI3K mutant variants and released mammary epithelial acini from growth arrest during morphogenesis in three-dimensional culture. These results provide a potential explanation for the context-dependent proliferative activities of insulin and IGF-1 and for the finding that the CDKN1C locus encoding p57Kip2 is silenced in many breast cancers, which frequently show hyperactivation of the PI3K pathway. The status of p57Kip2 may thus be an important factor to assess when considering targeted therapy against the ERK or PI3K pathways.


Journal of Autoimmunity | 2013

PhIP-Seq characterization of autoantibodies from patients with multiple sclerosis, type 1 diabetes and rheumatoid arthritis

H. Benjamin Larman; Uri Laserson; Luis Querol; Katrijn Verhaeghen; Nicole L. Solimini; George Xu; Paul L. Klarenbeek; George M. Church; David A. Hafler; Robert M. Plenge; Peter Nigrovic; Philip L. De Jager; Ilse Weets; Geert A. Martens; Kevin C. O'Connor; Stephen J. Elledge

Autoimmune disease results from a loss of tolerance to self-antigens in genetically susceptible individuals. Completely understanding this process requires that targeted antigens be identified, and so a number of techniques have been developed to determine immune receptor specificities. We previously reported the construction of a phage-displayed synthetic human peptidome and a proof-of-principle analysis of antibodies from three patients with neurological autoimmunity. Here we present data from a large-scale screen of 298 independent antibody repertoires, including those from 73 healthy sera, using phage immunoprecipitation sequencing. The resulting database of peptide-antibody interactions characterizes each individuals unique autoantibody fingerprint, and includes specificities found to occur frequently in the general population as well as those associated with disease. Screening type 1 diabetes (T1D) patients revealed a prematurely polyautoreactive phenotype compared with their matched controls. A collection of cerebrospinal fluids and sera from 63 multiple sclerosis patients uncovered novel, as well as previously reported antibody-peptide interactions. Finally, a screen of synovial fluids and sera from 64 rheumatoid arthritis patients revealed novel disease-associated antibody specificities that were independent of seropositivity status. This work demonstrates the utility of performing PhIP-Seq screens on large numbers of individuals and is another step toward defining the full complement of autoimmunoreactivities in health and disease.

Collaboration


Dive into the Nicole L. Solimini's collaboration.

Top Co-Authors

Avatar

Stephen J. Elledge

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ji Luo

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Mamie Z. Li

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Qikai Xu

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Anthony C. Liang

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge