Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole Leclerc is active.

Publication


Featured researches published by Nicole Leclerc.


Journal of Biological Chemistry | 2002

Characterization of New Cell Permeable C3-like Proteins That Inactivate Rho and Stimulate Neurite Outgrowth on Inhibitory Substrates

Matthew J. Winton; Catherine I. Dubreuil; Dana Lasko; Nicole Leclerc; Lisa McKerracher

The activation state of Rho is an important determinant of axon growth and regeneration in neurons. Axons can extend neurites on growth inhibitory substrates when Rho is inactivated by C3-ADP-ribosyltransferase (C3). We found by Rho-GTP pull-down assay that inhibitory substrates activate Rho. To inactivate Rho, scrape-loading of C3 was necessary because it does not freely enter cells. To overcome the poor permeability of C3, we made and characterized five new recombinant C3-like chimeric proteins designed to cross the cell membrane by receptor-independent mechanisms. These proteins were constructed by the addition of short transport peptides to the carboxyl-terminal of C3 and tested using a bioassay measuring neurite outgrowth of PC-12 cells plated on growth inhibitory substrates. All five constructs stimulated neurite outgrowth but with different dose-response profiles. Biochemical properties of the chimeric proteins were examined using C3-05, the most effective construct tested. Gel shift assays showed that C3-05 retained the ability to ADP-ribosylate Rho. Western blots and immunocytochemistry were used to verify the presence of C3 inside treated cells. C3-05 was also effective at promoting neurite outgrowth in primary neuronal cultures, as well as causing the disassembly of actin stress fibers and focal adhesions complexes in fibroblasts. These studies demonstrate that the new C3-like proteins are effective in delivering biologically active C3 into different cell types, thereby, inactivating Rho.


Journal of Biological Chemistry | 2012

Interaction of Endogenous Tau Protein with Synaptic Proteins Is Regulated by N-Methyl-d-aspartate Receptor-dependent Tau Phosphorylation

Siddhartha Mondragón-Rodríguez; Emilie Trillaud-Doppia; Anthony Dudilot; Catherine Bourgeois; Michel Lauzon; Nicole Leclerc; Jannic Boehm

Background: Tau phosphorylation affects synaptic transmission, but the underlying mechanism remains elusive. Results: NMDA receptor activation leads to phosphorylation of endogenous tau, thereby regulating the interaction of tau with Fyn and postsynaptic scaffolding protein PSD95. Conclusion: Phosphorylation of tau controls the interaction of tau with the postsynaptic PSD95-Fyn-NMDA receptor complex leading to changes in synaptic activity. Significance: The here described physiological mechanism could go awry during the development of Alzheimer disease. Amyloid-β and tau protein are the two most prominent factors in the pathology of Alzheimer disease. Recent studies indicate that phosphorylated tau might affect synaptic function. We now show that endogenous tau is found at postsynaptic sites where it interacts with the PSD95-NMDA receptor complex. NMDA receptor activation leads to a selective phosphorylation of specific sites in tau, regulating the interaction of tau with Fyn and the PSD95-NMDA receptor complex. Based on our results, we propose that the physiologically occurring phosphorylation of tau could serve as a regulatory mechanism to prevent NMDA receptor overexcitation.


Molecular and Cellular Neuroscience | 1998

Dystonin Is Essential for Maintaining Neuronal Cytoskeleton Organization.

Gratien Dalpé; Nicole Leclerc; Annie Vallée; Anne Messer; Martine Mathieu; Yves De Repentigny; Rashmi Kothary

The mouse neurological mutant dystonia musculorum (dt) suffers from a hereditary sensory neuropathy. We have previously described the cloning and characterization of the dt gene, which we named dystonin (Dst). We had shown that dystonin is a neural isoform of bullous pemphigoid antigen 1 (Bpag1) with an N-terminal actin-binding domain. It has been shown previously that dystonin is a cytoskeletal linker protein, forming a bridge between F-actin and intermediate filaments. Here, we have used two different antibody preparations against dystonin and detected a high-molecular-weight protein in immunoblot analysis of spinal cord extracts. We also show that this high-molecular-weight protein was not detectable in the nervous system of all dt alleles tested. Immunohistochemical analysis revealed that dystonin was present in different compartments of neurons-cell bodies, dendrites, and axons, regions which are rich in the three elements of the cytoskeleton (F-actin, neurofilaments, and microtubules). Ultrastructural analysis of dt dorsal root axons revealed disorganization of the neurofilament network and surprisingly also of the microtubule network. In this context it is of interest that we observed altered levels of the microtubule-associated proteins MAP2 and tau in spinal cord neurons of different dt alleles. Finally, dt dorsal root ganglion neurons formed neurites in culture, but the cytoskeleton was disorganized within these neurites. Our results demonstrate that dystonin is essential for maintaining neuronal cytoskeleton integrity but is not required for establishing neuronal morphology. Copyright 1998 Academic Press.


Developmental Brain Research | 2000

Exogenous BDNF, NT-3 and NT-4 differentially regulate neurite outgrowth in cultured hippocampal neurons

Chantal Labelle; Nicole Leclerc

Multiple growth factors contribute to the differentiation of dendritic and axonal processes by a neuron. Cultured hippocampal cells elaborate dendritic and axonal processes following well-defined steps. We used this culture system to determine the specific effects of brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) on dendritic and axonal differentiation in hippocampal pyramidal neurons. We demonstrated that each of these neurotrophins exert distinct effects on neurite outgrowth. Both BDNF and NT-3 had positive effects on the outgrowth of undifferentiated neurites, called minor neurites, and on the axonal process of hippocampal pyramidal neurons. However, the effect of NT-3 was more important than that of BDNF. On the other hand, NT-4 did not enhance axonal outgrowth but had only an effect on the outgrowth of minor neurites. Since cytoskeletal proteins play crucial roles in promoting neurite outgrowth, we examined the protein levels of some of these proteins that are associated with neurite outgrowth: beta-actin, gamma-actin, alpha-tubulin, MAP2 and tau. Surprisingly, we did not detect any change in their protein levels. Taken together, our results show that BDNF, NT-3 and NT-4 exert distinct effects on the neuritic compartments of hippocampal neurons.


PLOS ONE | 2012

Hyperphosphorylation and cleavage at D421 enhance tau secretion.

Vanessa Plouffe; Nguyen-Vi Mohamed; Jessica Rivest-McGraw; Johanne Bertrand; Michel Lauzon; Nicole Leclerc

It is well established that tau pathology propagates in a predictable manner in Alzheimer’s disease (AD). Moreover, tau accumulates in the cerebrospinal fluid (CSF) of AD’s patients. The mechanisms underlying the propagation of tau pathology and its accumulation in the CSF remain to be elucidated. Recent studies have reported that human tau was secreted by neurons and non-neuronal cells when it was overexpressed indicating that tau secretion could contribute to the spreading of tau pathology in the brain and could lead to its accumulation in the CSF. In the present study, we showed that the overexpression of human tau resulted in its secretion by Hela cells. The main form of tau secreted by these cells was cleaved at the C-terminal. Surprisingly, secreted tau was dephosphorylated at several sites in comparison to intracellular tau which presented a strong immunoreactivity to all phospho-dependent antibodies tested. Our data also revealed that phosphorylation and cleavage of tau favored its secretion by Hela cells. Indeed, the mimicking of phosphorylation at 12 sites known to be phosphorylated in AD enhanced tau secretion. A mutant form of tau truncated at D421, the preferential cleavage site of caspase-3, was also significantly more secreted than wild-type tau. Taken together, our results indicate that hyperphosphorylation and cleavage of tau by favoring its secretion could contribute to the propagation of tau pathology in the brain and its accumulation in the CSF.


European Journal of Neuroscience | 1998

beta-Actin is confined to structures having high capacity of remodelling in developing and adult rat cerebellum.

Kristina D. Micheva; Annie Vallée; Clermont Beaulieu; Ira M. Herman; Nicole Leclerc

Neurons undergo complex morphological changes during differentiation and in cases of plasticity. A major determinant of cell morphology is the actin cytoskeleton, which in neurons is comprised of two actin isoforms, non‐muscle γ‐ and β‐actin. To better understand their respective roles during differentiation and plasticity, their cellular and subcellular localization was examined in developing and adult cerebellar cortex. It was observed that γ‐actin is expressed at a constant level throughout development, while the level of β‐actin expression rapidly decreases with age. At the light microscopic level, γ‐actin staining is ubiquitous and the only developmental change observed is a relative reduction of its concentration in cell bodies and white matter. In contrast, β‐actin staining almost completely disappears from the cytoplasm of cell bodies, primary dendrites and axons. In young cerebellar cultures, γ‐actin is found in the cell body, neurites and growth cones, while β‐actin is mainly found in growth cones, as previously reported in other primary neuronal culture systems [Kaech et al. (1997), J. Neuroscience, 17, 9565–9572; Bassell et al. (1998), J. Neuroscience, 18, 251–265]. Electron microscopy of post‐embedding immunogold‐labelled tissue confirms the widespread distribution of γ‐actin, and also reveals an increased concentration of γ‐actin in dendritic spines in the adult. During development, β‐actin accumulation is observed in actively growing structures, e.g. growth cones, filopodia, cell bodies and axonal tracts. In the adult cerebellar cortex, β‐actin is preferentially found in dendritic spines, structures which are known to retain their capacity for morphological modifications in the adult brain. This differential subcellular localization and developmental regulation of the two actin isoforms point to their different roles in neurons.


European Journal of Neuroscience | 2013

Spreading of tau pathology in Alzheimer's disease by cell‐to‐cell transmission

Nguyen-Vi Mohamed; Thibaut Herrou; Vanessa Plouffe; Nicolas Piperno; Nicole Leclerc

It is well documented that neurofibrillary tangles composed of aggregated tau protein propagate in a predictable pattern in Alzheimers disease (AD). The mechanisms underlying the propagation of tau pathology are still poorly understood. Recent studies have provided solid data demonstrating that in several neurodegenerative diseases including AD, the spreading of misfolded protein aggregates in the brain would result from prion‐like cell‐to‐cell transmission. Consistent with this new concept, recent studies have reported that human tau can be released in the extracellular space by an active process of secretion, and can be endocytosed both in vitro and in vivo. Most importantly, it was reported that the spreading of tau pathology was observed along synaptically connected circuits in a transgenic mouse model where human tau overexpression was restricted in the entorhinal cortex. This indicates that secretion of tau by presynaptic neurons and its uptake by postsynaptic neurons could be the sequential events leading to the propagation of tau pathology in the brain.


Journal of Neurochemistry | 2002

Altered levels and distribution of microtubule-associated proteins before disease onset in a mouse model of amyotrophic lateral sclerosis

C. Abi Farah; M. D. Nguyen; Jean-Pierre Julien; Nicole Leclerc

Alterations of the axonal transport and microtubule network are potential causes of motor neurodegeneration in mice expressing a mutant form of the superoxide dismutase 1 (SOD1G37R) linked to amyotrophic lateral sclerosis (ALS). In the present study, we investigated the biology of microtubule‐associated proteins (MAPs), responsible for the formation and stabilization of microtubules, in SOD1G37R mice. Our results show that the protein levels of MAP2, MAP1A, tau 100 kDa and tau 68 kDa species decrease significantly as early as 5 months before onset of symptoms in the spinal cord of SOD1G37R mice, whereas decrease in levels of tau 52–55 kDa species is most often noted with the manifestation of the clinical symptoms. Interestingly, there was no change in the protein levels of MAPs in the brain of SOD1G37R mice, a CNS organ spared by the mutant SOD1 toxicity. Remarkably, as early as 5 months before disease onset, the binding affinities of MAP1A, MAP2 and tau isoforms to the cytoskeleton decreased in spinal cord of SOD1G37R mice. This change correlated with a hyperphosphorylation of the soluble tau 52–55 kDa species at epitopes recognized by the antibodies AT8 and PHF‐1. Finally, a shift in the distribution of MAP2 from the cytosol to the membrane is detected in SOD1G37R mice at the same stage. Thus, alterations in the integrity of microtubules are early events of the neurodegenerative processes in SOD1G37R mice.


American Journal of Pathology | 2005

Fragmentation of the Golgi Apparatus Induced by the Overexpression of Wild-Type and Mutant Human Tau Forms in Neurons

Dalinda Liazoghli; Sébastien Perreault; Kristina D. Micheva; Mylène Desjardins; Nicole Leclerc

Tau is a microtubule-associated protein enriched in the axonal compartment. In several neurodegenerative diseases including Alzheimers disease, hyperphosphorylated tau accumulates in the somatodendritic compartment, self-aggregates, and forms neurofibrillary tangles. A fragmentation of the neuronal Golgi apparatus (GA) was also observed in Alzheimers disease. In the present study, we examined the effect of overexpressing human tau on the organization of the neuronal GA in rat hippocampal cultures and in JNPL3 mice expressing tau mutant P301L. GA fragmentation was noted in a significantly higher percentage of hippocampal neurons overexpressing wild-type human tau than in control neurons over-expressing green fluorescent protein (GFP) alone. Most importantly, in neurons overexpressing mutant forms of human tau (P301L, V337M, or R406W), the percentage of neurons with a fragmented GA was 10% higher than that of neurons overexpressing wild-type human tau. In JNPL3 mice, a significantly higher percentage of motor neurons presented a fragmented GA compared to control mice. Interestingly, fragmentation of the GA was more frequent in neurons containing an accumulation and aggregation of hyperphosphorylated tau in the cell body than in neurons without these features. In both primary hippocampal neurons and JNPL3 mice, the tau-induced GA fragmentation was not caused by apoptosis. The pre-sent results implicate tau in GA fragmentation and show that this event occurs before the formation of neurofibrillary tangles.


Neuroscience | 2010

THE PATTERN OF HUMAN TAU PHOSPHORYLATION IS THE RESULT OF PRIMING AND FEEDBACK EVENTS IN PRIMARY HIPPOCAMPAL NEURONS

Johanne Bertrand; Vanessa Plouffe; Patrick Sénéchal; Nicole Leclerc

Tau, an axonal microtubule-associated protein, becomes hyperphosphorylated in several neurodegenerative diseases including Alzheimer disease (AD). In AD brain, tau is phosphorylated at pathological multiple-site epitopes recognized by the antibodies AT8 (S199/S202/T205), AT100 (T212/S214/T217), AT180 (T231/S235) and PHF-1 (S396/S404) and at individual sites such as S262 and S422. Although it is believed that the hyperphosphorylation of tau occurs in a precise cascade of phosphorylation events, this cascade remains to be demonstrated in mammalian neuronal cells. In the present study, human tau mutants in which disease-related sites associated with either an early (AT8, T231 and S262) or intermediate (T217) stage of tau pathology were mutated in alanine to inhibit their phosphorylation were overexpressed in primary hippocampal neurons to examine their impact on the phosphorylation of other disease-related sites. The mutation in alanine of S262 decreased the phosphorylation of the AT8 and PHF-1 epitopes and that of T217. When the sites included in the AT8 epitope were mutated in alanine, the phosphorylation of T217 and PHF-1 epitope was significantly reduced indicating that the decrease of AT8 phosphorylation was a key event in the impaired phosphorylation of T217 and PHF-1 by the S262 alanine mutant. Most interestingly, the mutation in alanine of T217 had a positive impact on the phosphorylation of the AT8 epitope, indicating the presence of a feedback loop between AT8 and T217 in rat hippocampal neurons. The phosphorylation of the AT180 epitope was increased when S262 and the sites forming the AT8 epitope were mutated in alanine. The mutation of the AT8 epitope also increased the phosphorylation of S422. All together, our data show that the sites forming the AT8 epitope could play a central role in regulating the phosphorylation of tau at disease-associated sites and that priming and feedback events take place to regulate the overall level of tau phosphorylation in rat hippocampal neurons.

Collaboration


Dive into the Nicole Leclerc's collaboration.

Top Co-Authors

Avatar

Michel Lauzon

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Anton

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge