Nicole M.A. White
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicole M.A. White.
Stroke | 2009
Michelle Ploughman; Victoria Windle; Crystal L. MacLellan; Nicole M.A. White; Jules J.E. Doré; Dale Corbett
Background and Purpose— Brain-derived neurotrophic factor (BDNF) is involved in neuronal survival, synaptic plasticity, learning and memory, and neuroplasticity. Further, exogenous treatment with BDNF or exposing animals to enrichment and exercise regimens, which also increase BDNF, enhances behavioral recovery after brain injury. Thus, the beneficial effects of rehabilitation in promoting recovery after stroke may also depend on BDNF. We tested this hypothesis by evaluating the contribution of BDNF to motor skill relearning after endothelin-1–induced middle cerebral artery occlusion in rats. Methods— Antisense BDNF oligonucleotide, which blocks the expression of BDNF (or saline vehicle) was infused into the contralateral lateral ventricle for 28 days after ischemia. Animals received either a graduated rehabilitation program, including running exercise and skilled reaching training, which simulates clinical practice, or no rehabilitation. Functional recovery was assessed with a battery of tests that measured skilled reaching, forelimb use asymmetry, and foraging ability. Results— Rehabilitation significantly improved skilled reaching ability in the staircase task. Antisense BDNF oligonucleotide effectively blocked BDNF mRNA, and negated the beneficial effects of rehabilitation on recovery of skilled reaching. Importantly, antisense BDNF oligonucleotide did not affect reaching with the unaffected limb, body weight, infarct size, or foraging ability, indicating the treatment was specific to relearning of motor skill after ischemia. Conclusions— This study is the first to identify a critical role for BDNF in rehabilitation-induced recovery after stroke, and our results suggest that new treatments to enhance BDNF would constitute a promising therapy for promoting recovery of function after stroke.
European Urology | 2011
Youssef M. Youssef; Nicole M.A. White; Jörg Grigull; Adriana Krizova; Christina Samy; Salvador Mejia-Guerrero; Andrew Evans; George M. Yousef
BACKGROUND Renal cell carcinoma (RCC) encompasses different histologic subtypes. Distinguishing between the subtypes is usually made by morphologic assessment, which is not always accurate. OBJECTIVE Our aim was to identify microRNA (miRNA) signatures that can distinguish the different RCC subtypes accurately. DESIGN, SETTING, AND PARTICIPANTS A total of 94 different subtype cases were analysed. miRNA microarray analysis was performed on fresh frozen tissues of three common RCC subtypes (clear cell, chromophobe, and papillary) and on oncocytoma. Results were validated on the original as well as on an independent set of tumours, using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis with miRNA-specific primers. MEASUREMENTS Microarray data were analysed by standard approaches. Relative expression for qRT-PCR was determined using the ΔΔC(T) method, and expression values were normalised to small nucleolar RNA, C/D box 44 (SNORD44, formerly RNU44). Experiments were done in triplicate, and an average was calculated. Fold change was expressed as a log(2) value. The top-scoring pairs classifier identified operational decision rules for distinguishing between different RCC subtypes and was robust under cross-validation. RESULTS AND LIMITATIONS We developed a classification system that can distinguish the different RCC subtypes using unique miRNA signatures in a maximum of four steps. The system has a sensitivity of 97% in distinguishing normal from RCC, 100% for clear cell RCC (ccRCC) subtype, 97% for papillary RCC (pRCC) subtype, and 100% accuracy in distinguishing oncocytoma from chromophobe RCC (chRCC) subtype. This system was cross-validated and showed an accuracy of about 90%. The oncogenesis of ccRCC is more closely related to pRCC, whereas chRCC is comparable with oncocytoma. We also developed a binary classification system that can distinguish between two individual subtypes. CONCLUSIONS MiRNA expression patterns can distinguish between RCC subtypes.
The Journal of Urology | 2011
Nicole M.A. White; Tian Tian Bao; Jörg Grigull; Youssef M. Youssef; Andrew Girgis; Maria Diamandis; Eman Fatoohi; Maged Metias; R. John Honey; Robert Stewart; Kenneth T. Pace; Georg A. Bjarnason; George M. Yousef
PURPOSE Renal cell carcinoma is the most common neoplasm of the adult kidney. Currently to our knowledge there are no biomarkers for diagnostic, prognostic or predictive applications for renal cell carcinoma. miRNAs are nonprotein coding RNAs that negatively regulate gene expression and are potential biomarkers for cancer. MATERIALS AND METHODS We analyzed 70 matched pairs of clear cell renal cell carcinoma and normal kidney tissues from the same patients by microarray analysis and validated our results by quantitative real-time polymerase chain reaction. We also performed extensive bioinformatic analysis to explore the role and regulation of miRNAs in clear cell renal cell carcinoma. RESULTS We identified 166 miRNAs that were significantly dysregulated in clear cell renal cell carcinoma, including miR-122, miR-155 and miR-210, which had the highest over expression, and miR-200c, miR-335 and miR-218, which were most down-regulated. Analysis of previously reported miRNAs dysregulated in RCC showed overall agreement in the direction of dysregulation. Extensive target prediction analysis revealed that many miRNAs were predicted to target genes involved in renal cell carcinoma pathogenesis. In renal cell carcinoma miRNA dysregulation can be attributed in part to chromosomal aberrations, co-regulation of miRNA clusters and co-expression with host genes. We also performed a preliminary analysis showing that miR-155 expression correlated with clear cell renal cell carcinoma size. This finding must be validated in a larger independent cohort. CONCLUSIONS Analysis showed that miRNAs are dysregulated in clear cell renal cell carcinoma and may contribute to kidney cancer pathogenesis by targeting more than 1 key molecule. We identified mechanisms that may contribute to miRNA dysregulation in clear cell renal cell carcinoma. Dysregulated miRNAs represent potential biomarkers for kidney cancer.
Molecular Cancer Research | 2010
Maria Diamandis; Nicole M.A. White; George M. Yousef
Personalized medicine (PM) is defined as “a form of medicine that uses information about a persons genes, proteins, and environment to prevent, diagnose, and treat disease.” The promise of PM has been on us for years. The suite of clinical applications of PM in cancer is broad, encompassing screening, diagnosis, prognosis, prediction of treatment efficacy, patient follow-up after surgery for early detection of recurrence, and the stratification of patients into cancer subgroup categories, allowing for individualized therapy. PM aims to eliminate the “one size fits all” model of medicine, which has centered on reaction to disease based on average responses to care. By dividing patients into unique cancer subgroups, treatment and follow-up can be tailored for each individual according to disease aggressiveness and the ability to respond to a certain treatment. PM is also shifting the emphasis of patient management from primary patient care to prevention and early intervention for high-risk individuals. In addition to classic single molecular markers, high-throughput approaches can be used for PM including whole genome sequencing, single-nucleotide polymorphism analysis, microarray analysis, and mass spectrometry. A common trend among these tools is their ability to analyze many targets simultaneously, thus increasing the sensitivity, specificity, and accuracy of biomarker discovery. Certain challenges need to be addressed in our transition to PM including assessment of cost, test standardization, and ethical issues. It is clear that PM will gradually continue to be incorporated into cancer patient management and will have a significant impact on our health care in the future. Mol Cancer Res; 8(9); 1175–87. ©2010 AACR.
British Journal of Cancer | 2011
Nicole M.A. White; H W Z Khella; J Grigull; S Adzovic; Y M Youssef; R J Honey; R Stewart; K T Pace; Georg A. Bjarnason; Michael A.S. Jewett; Andrew Evans; M Gabril; George M. Yousef
Background:Renal cell carcinoma (RCC) is the most common neoplasm of the adult kidney. Metastatic RCC is difficult to treat. The 5-year survival rate for metastatic RCC is ⩽10%. Recently, microRNAs (miRNAs) have been shown to have a role in cancer metastasis and potential as prognostic biomarkers in cancer.Method:We performed a miRNA microarray to identify a miRNA signature characteristic of metastatic compared with primary RCCs. We validated our results by quantitative real-time PCR. We performed experimental and bioinformatic analyses to explore the involvement of miR-215 in RCC progression and metastasis.Results:We identified 65 miRNAs that were significantly altered in metastatic compared with primary RCCs. We validated our results by examining the expression of miR-10b, miR-126, miR-196a, miR-204 and miR-215, in two independent cohorts of patients. We showed that overexpression of miR-215 decreased cellular migration and invasion in an RCC cell line model. In addition, through gene expression profiling, we identified direct and indirect targets of miR-215 that can contribute to tumour metastasis.Conclusion:Our analysis showed that miRNAs are altered in metastatic RCCs and can contribute to kidney cancer metastasis through different biological processes. Dysregulated miRNAs represent potential prognostic biomarkers and may have therapeutic applications in kidney cancer.
European Journal of Neuroscience | 2007
Michelle Ploughman; Zachary Attwood; Nicole M.A. White; Jules J.E. Doré; Dale Corbett
Endurance exercise (i.e. running), by up‐regulating brain‐derived neurotrophic factor (BDNF) and other modulators of synaptic plasticity, improves attention and learning, both critical components of stroke rehabilitation. We hypothesized that, following middle cerebral artery occlusion in male Sprague‐Dawley rats, endurance exercise would act synergistically with a challenging skilled forelimb task to facilitate motor recovery. Animals were randomly assigned to one of four rehabilitation conditions: no rehabilitation, running only, reach training only, and reach training preceded by running (run/reach training) for 5 weeks beginning 5 days after stroke. The behavioral outcome, morphological change and mRNA expression of proteins implicated in neuroplasticity (BDNF, synapsin I and microtubule‐associated protein 2) were compared. Endurance exercise on a motorized running wheel, prior to reach training, enhanced recovery of skilled reaching ability but did not transfer to gross motor skills such as postural support (forelimb asymmetry test) and gait (ladder rung walking test). Microtubule‐associated protein 2 staining density in the run/reach group was slightly enhanced in the contralateral motor cortex compared with the contralateral sensory and ipsilateral cingulate cortices, suggesting that running preceding reach training may have resulted in more dendritic branching within the motor cortex in this group. No significant differences in mRNA levels were detected among the training paradigms; however, there was a trend toward greater BDNF and synapsin I mRNA in the reaching groups. These findings suggest that exercise facilitates learning of subsequent challenging reaching tasks after stroke, which has the potential to optimize outcomes in patients with stroke.
Tumor Biology | 2012
Heba W.Z. Khella; Nicole M.A. White; Hala Faragalla; Manal Gabril; Mina Boazak; David Dorian; Bishoy Khalil; Hany Antonios; Tian Tian Bao; Maria D. Pasic; R. John Honey; Robert Stewart; Kenneth T. Pace; Georg A. Bjarnason; Michael A.S. Jewett; George M. Yousef
Metastasis results in most of the cancer deaths in clear cell renal cell carcinoma (ccRCC). MicroRNAs (miRNAs) regulate many important cell functions and play important roles in tumor development, metastasis and progression. In our previous study, we identified a miRNA signature for metastatic RCC. In this study, we validated the top differentially expressed miRNAs on matched primary and metastatic ccRCC pairs by quantitative polymerase chain reaction. We performed bioinformatics analyses including target prediction and combinatorial analysis of previously reported miRNAs involved in tumour progression and metastasis. We also examined the co-expression of the miRNAs clusters and compared expression of intronic miRNAs and their host genes. We observed significant dysregulation between primary and metastatic tumours from the same patient. This indicates that, at least in part, the metastatic signature develops gradually during tumour progression. We identified metastasis-dysregulated miRNAs that can target a number of genes previously found to be involved in metastasis of kidney cancer as well as other malignancies. In addition, we found a negative correlation of expression of miR-126 and its target vascular endothelial growth factor (VEGF)-A. Cluster analysis showed that members of the same miRNA cluster follow the same expression pattern, suggesting the presence of a locus control regulation. We also observed a positive correlation of expression between intronic miRNAs and their host genes, thus revealing another potential control mechanism for miRNAs. Many of the significantly dysregulated miRNAs in metastatic ccRCC are highly conserved among species. Our analysis suggests that miRNAs are involved in ccRCC metastasis and may represent potential biomarkers.
Biological Chemistry | 2010
Nicole M.A. White; Anna Bui; Salvador Mejia-Guerrero; Julie Chao; Antoninus Soosaipillai; Youssef M. Youssef; Marina Mankaruos; R. John D'a. Honey; Robert Stewart; Kenneth T. Pace; Linda Sugar; Eleftherios P. Diamandis; Jules J.E. Doré; George M. Yousef
Abstract Renal cell carcinoma (RCC) accounts for 3% of all adult malignancies and currently no diagnostic marker exists. Kallikrein-related peptidases (KLKs) have been implicated in numerous cancers including ovarian, prostate, and breast carcinoma. KLKs 5, 6, 10, and 11 have decreased expression in RCC when compared to normal kidney tissue. Our bioinformatic analysis indicated that the KLK 1, 6, and 7 genes have decreased expression in RCC. We experimentally verified these results and found that decreased expression of KLKs 1 and 3 were significantly associated with the clear cell RCC subtype (p<0.001). An analysis of miRNAs differentially expressed in RCC showed that 61 of the 117 miRNAs that were reported to be dysregulated in RCC were predicted to target KLKs. We experimentally validated two targets using two independent approaches. Transfection of miR-224 into HEK-293 cells resulted in decreased KLK1 protein levels. A luciferase assay demonstrated that hsa-let-7f can target KLK10 in the RCC cell line ACHN. Our results, showing differential expression of KLKs in RCC, suggest that KLKs could be novel diagnostic markers for RCC and that their dysregulation could be under miRNA control. The observation that KLKs could represent targets for miRNAs suggests a post-transcriptional regulatory mechanism with possible future therapeutic applications.
Molecular & Cellular Proteomics | 2013
Olena Masui; Nicole M.A. White; Leroi V. DeSouza; Olga Krakovska; Ajay Matta; Shereen Metias; Bishoy Khalil; Alexander D. Romaschin; R. John Honey; Robert Stewart; Kenneth T. Pace; G. A. Bjarnason; K. W. Michael Siu; George M. Yousef
Metastatic renal cell carcinoma (RCC) is one of the most treatment-resistant malignancies, and patients have a dismal prognosis, with a <10% five-year survival rate. The identification of markers that can predict the potential for metastases will have a great effect in improving patient outcomes. In this study, we used differential proteomics with isobaric tags for relative and absolute quantitation (iTRAQ) labeling and LC-MS/MS analysis to identify proteins that are differentially expressed in metastatic and primary RCC. We identified 1256 non-redundant proteins, and 456 of these were quantified. Further analysis identified 29 proteins that were differentially expressed (12 overexpressed and 17 underexpressed) in metastatic and primary RCC. Dysregulated protein expressions of profilin-1 (Pfn1), 14–3-3 zeta/delta (14–3-3ζ), and galectin-1 (Gal-1) were verified on two independent sets of tissues by means of Western blot and immunohistochemical analysis. Hierarchical clustering analysis showed that the protein expression profile specific for metastatic RCC can distinguish between aggressive and non-aggressive RCC. Pathway analysis showed that dysregulated proteins are involved in cellular processes related to tumor progression and metastasis. Furthermore, preliminary analysis using a small set of tumors showed that increased expression of Pfn1 is associated with poor outcome and is a potential prognostic marker in RCC. In addition, 14–3-3ζ and Gal-1 also showed higher expression in tumors with poor prognosis than in those with good prognosis. Dysregulated proteins in metastatic RCC represent potential prognostic markers for kidney cancer patients, and a greater understanding of their involved biological pathways can serve as the foundation of the development of novel targeted therapies for metastatic RCC.
BMC Medicine | 2010
Nicole M.A. White; George M. Yousef
Renal cell carcinoma (RCC) is the most common neoplasm of the adult kidney. The role of the von-Hippel-Lindeau (VHL) tumour suppressor gene is well established in RCC with a loss of VHL protein leading to accumulated hypoxia-induced factor (HIF) and the subsequent transcriptional activation of multiple downstream targets. Recently, microRNAs (miRNAs) have been shown to be differentially expressed in RCC and their role in RCC pathogenesis is emerging. This month, in BMC Medicine, Gleadle and colleagues show that certain miRNAs are regulated by VHL in either a hypoxia-inducible factor (HIF)-dependent or HIF-independent manner in RCC. They also show that miRNA expression correlates with the survival of RCC patients.In this commentary, we discuss the current understanding of the role of miRNAs in RCC and the different possible scenarios of their involvement in RCC pathogenesis. We also address their clinical significance as tumour markers, together with the potential use of miRNAs as therapeutic targets. Finally, we discuss some of the challenges that face the fast-evolving field of miRNAs, including the identification and validation of miRNA targets and the difficulties associated with establishing a link between miRNA expression and biological effects. A more thorough understanding of the biological nature of miRNAs and careful experimental planning will help us to reveal the complex role that miRNAs play in RCC pathogenesis.See research article: http://www.biomedcentral.com/1741-7015/8/64