Nicole M. Kretzer
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicole M. Kretzer.
Journal of Experimental Medicine | 2012
Ansuman T. Satpathy; Wumesh Kc; Jörn C. Albring; Brian T. Edelson; Nicole M. Kretzer; Deepta Bhattacharya; Theresa L. Murphy; Kenneth M. Murphy
The zinc finger transcription factor Zbtb46 specifically marks cDCs and their committed precursors and, when overexpressed in BM progenitors, promotes cDC development at the expense of granulocytes.
Nature | 2012
Roxane Tussiwand; Wan-Ling Lee; Theresa L. Murphy; Mona Mashayekhi; Wumesh Kc; Jörn C. Albring; Ansuman T. Satpathy; Jeffrey A. Rotondo; Brian T. Edelson; Nicole M. Kretzer; Xiaodi Wu; Leslie A. Weiss; Elke Glasmacher; Peng Li; Wei Liao; Michael S. Behnke; Samuel S.K. Lam; Cora T. Aurthur; Warren J. Leonard; Harinder Singh; Christina L. Stallings; L. David Sibley; Robert D. Schreiber; Kenneth M. Murphy
The AP1 transcription factor Batf3 is required for homeostatic development of CD8α+ classical dendritic cells that prime CD8 T-cell responses against intracellular pathogens. Here we identify an alternative, Batf3-independent pathway in mice for CD8α+ dendritic cell development operating during infection with intracellular pathogens and mediated by the cytokines interleukin (IL)-12 and interferon-γ. This alternative pathway results from molecular compensation for Batf3 provided by the related AP1 factors Batf, which also functions in T and B cells, and Batf2 induced by cytokines in response to infection. Reciprocally, physiological compensation between Batf and Batf3 also occurs in T cells for expression of IL-10 and CTLA4. Compensation among BATF factors is based on the shared capacity of their leucine zipper domains to interact with non-AP1 factors such as IRF4 and IRF8 to mediate cooperative gene activation. Conceivably, manipulating this alternative pathway of dendritic cell development could be of value in augmenting immune responses to vaccines.
Cell | 2014
Malay Haldar; Masako Kohyama; Alex Yick-Lun So; Wumesh Kc; Xiaodi Wu; Carlos G. Briseño; Ansuman T. Satpathy; Nicole M. Kretzer; Hisashi Arase; Namakkal S. Rajasekaran; Li Wang; Takeshi Egawa; Kazuhiko Igarashi; David Baltimore; Theresa L. Murphy; Kenneth M. Murphy
Splenic red pulp macrophages (RPM) degrade senescent erythrocytes and recycle heme-associated iron. The transcription factor SPI-C is selectively expressed by RPM and is required for their development, but the physiologic stimulus inducing Spic is unknown. Here, we report that Spic also regulated the development of F4/80(+)VCAM1(+) bone marrow macrophages (BMM) and that Spic expression in BMM and RPM development was induced by heme, a metabolite of erythrocyte degradation. Pathologic hemolysis induced loss of RPM and BMM due to excess heme but induced Spic in monocytes to generate new RPM and BMM. Spic expression in monocytes was constitutively inhibited by the transcriptional repressor BACH1. Heme induced proteasome-dependent BACH1 degradation and rapid Spic derepression. Furthermore, cysteine-proline dipeptide motifs in BACH1 that mediate heme-dependent degradation were necessary for Spic induction by heme. These findings are the first example of metabolite-driven differentiation of a tissue-resident macrophage subset and provide new insights into iron homeostasis.
Immunity | 2015
Roxane Tussiwand; Bart Everts; Gary E. Grajales-Reyes; Nicole M. Kretzer; Arifumi Iwata; Juhi Bagaitkar; Xiaodi Wu; Rachel Wong; David A. Anderson; Theresa L. Murphy; Edward J. Pearce; Kenneth M. Murphy
The two major lineages of classical dendritic cells (cDCs) express and require either IRF8 or IRF4 transcription factors for their development and function. IRF8-dependent cDCs promote anti-viral and T-helper 1 (Th1) cell responses, whereas IRF4-expressing cDCs have been implicated in controlling both Th2 and Th17 cell responses. Here, we have provided evidence that Kruppel-like factor 4 (Klf4) is required in IRF4-expressing cDCs to promote Th2, but not Th17, cell responses in vivo. Conditional Klf4 deletion within cDCs impaired Th2 cell responses during Schistosoma mansoni infection, Schistosoma egg antigen (SEA) immunization, and house dust mite (HDM) challenge without affecting cytotoxic T lymphocyte (CTL), Th1 cell, or Th17 cell responses to herpes simplex virus, Toxoplasma gondii, and Citrobacter rodentium infections. Further, Klf4 deletion reduced IRF4 expression in pre-cDCs and resulted in selective loss of IRF4-expressing cDCs subsets in several tissues. These results indicate that Klf4 guides a transcriptional program promoting IRF4-expressing cDCs heterogeneity.
Nature Immunology | 2015
Gary E. Grajales-Reyes; Arifumi Iwata; Jörn C. Albring; Xiaodi Wu; Roxane Tussiwand; Wumesh Kc; Nicole M. Kretzer; Carlos G. Briseño; Vivek Durai; Prachi Bagadia; Malay Haldar; Jörg Schönheit; Frank Rosenbauer; Theresa L. Murphy; Kenneth M. Murphy
The transcription factors Batf3 and IRF8 are required for the development of CD8α+ conventional dendritic cells (cDCs), but the basis for their actions has remained unclear. Here we identified two progenitor cells positive for the transcription factor Zbtb46 that separately generated CD8α+ cDCs and CD4+ cDCs and arose directly from the common DC progenitor (CDP). Irf8 expression in CDPs required prior autoactivation of Irf8 that was dependent on the transcription factor PU.1. Specification of the clonogenic progenitor of CD8α+ cDCs (the pre-CD8 DC) required IRF8 but not Batf3. However, after specification of pre-CD8 DCs, autoactivation of Irf8 became Batf3 dependent at a CD8α+ cDC–specific enhancer with multiple transcription factor AP1-IRF composite elements (AICEs) within the Irf8 superenhancer. CDPs from Batf3−/− mice that were specified toward development into pre-CD8 DCs failed to complete their development into CD8α+ cDCs due to decay of Irf8 autoactivation and diverted to the CD4+ cDC lineage.
Annual Review of Immunology | 2016
Theresa L. Murphy; Gary E. Grajales-Reyes; Xiaodi Wu; Roxane Tussiwand; Carlos G. Briseño; Arifumi Iwata; Nicole M. Kretzer; Vivek Durai; Kenneth M. Murphy
The dendritic cells (DCs) of the immune system function in innate and adaptive responses by directing activity of various effector cells rather than serving as effectors themselves. DCs and closely related myeloid lineages share expression of many surface receptors, presenting a challenge in distinguishing their unique in vivo functions. Recent work has taken advantage of unique transcriptional programs to identify and manipulate murine DCs in vivo. This work has assigned several nonredundant in vivo functions to distinct DC lineages, consisting of plasmacytoid DCs and several subsets of classical DCs that promote different immune effector modules in response to pathogens. In parallel, a correspondence between human and murine DC subsets has emerged, underlying structural similarities for the DC lineages between these species. Recent work has begun to unravel the transcriptional circuitry that controls the development and diversification of DCs from common progenitors in the bone marrow.
Nature | 2014
Wumesh Kc; Ansuman T. Satpathy; Aaron S. Rapaport; Carlos G. Briseño; Xiaodi Wu; Jörn C. Albring; Emilie V. Russler-Germain; Nicole M. Kretzer; Vivek Durai; Stephen P. Persaud; Brian T. Edelson; Jakob Loschko; Marina Cella; Paul M. Allen; Michel C. Nussenzweig; Marco Colonna; Barry P. Sleckman; Theresa L. Murphy; Kenneth M. Murphy
The transcription factors c-Myc and N-Myc—encoded by Myc and Mycn, respectively—regulate cellular growth and are required for embryonic development. A third paralogue, Mycl1, is dispensable for normal embryonic development but its biological function has remained unclear. To examine the in vivo function of Mycl1 in mice, we generated an inactivating Mycl1gfp allele that also reports Mycl1 expression. We find that Mycl1 is selectively expressed in dendritic cells (DCs) of the immune system and controlled by IRF8, and that during DC development, Mycl1 expression is initiated in the common DC progenitor concurrent with reduction in c-Myc expression. Mature DCs lack expression of c-Myc and N-Myc but maintain L-Myc expression even in the presence of inflammatory signals such as granulocyte–macrophage colony-stimulating factor. All DC subsets develop in Mycl1-deficient mice, but some subsets such as migratory CD103+ conventional DCs in the lung and liver are greatly reduced at steady state. Importantly, loss of L-Myc by DCs causes a significant decrease in in vivo T-cell priming during infection by Listeria monocytogenes and vesicular stomatitis virus. The replacement of c-Myc by L-Myc in immature DCs may provide for Myc transcriptional activity in the setting of inflammation that is required for optimal T-cell priming.
Journal of Experimental Medicine | 2016
Nicole M. Kretzer; Derek J. Theisen; Roxane Tussiwand; Carlos G. Briseño; Gary E. Grajales-Reyes; Xiaodi Wu; Vivek Durai; Jörn C. Albring; Prachi Bagadia; Theresa L. Murphy; Kenneth M. Murphy
RAB43 is a vesicular transport protein unique to CD8α+ DCs that is localized to the Golgi. Kretzer et al. show that RAB43 is necessary for optimal cross-presentation of cell-associated antigens by CD8α+ DCs in vitro and in vivo but that it is dispensable for cross-presentation by in vitro monocyte-derived DCs.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Xiaodi Wu; Carlos G. Briseño; Gary E. Grajales-Reyes; Malay Haldar; Arifumi Iwata; Nicole M. Kretzer; Wumesh Kc; Roxane Tussiwand; Yujiro Higashi; Theresa L. Murphy; Kenneth M. Murphy
Significance Distinct transcription factors regulate the development of immune cell lineages, and changes in their expression can alter the balance of cell types responding to infection. Recent studies have identified Zeb2 as a transcription factor important for the final maturation of natural killer cells and effector CD8+ T cells. In this study, we show that Zeb2 is required for the development of two myeloid cell types, the monocyte and the plasmacytoid dendritic cell, and clarify that this factor is not required for the development of classical dendritic cells. Dendritic cells (DCs) and monocytes develop from a series of bone-marrow–resident progenitors in which lineage potential is regulated by distinct transcription factors. Zeb2 is an E-box–binding protein associated with epithelial–mesenchymal transition and is widely expressed among hematopoietic lineages. Previously, we observed that Zeb2 expression is differentially regulated in progenitors committed to classical DC (cDC) subsets in vivo. Using systems for inducible gene deletion, we uncover a requirement for Zeb2 in the development of Ly-6Chi monocytes but not neutrophils, and we show a corresponding requirement for Zeb2 in expression of the M-CSF receptor in the bone marrow. In addition, we confirm a requirement for Zeb2 in development of plasmacytoid DCs but find that Zeb2 is not required for cDC2 development. Instead, Zeb2 may act to repress cDC1 progenitor specification in the context of inflammatory signals.
Journal of The American Society of Nephrology | 2018
Sebastian Brähler; Bernd H. Zinselmeyer; Saravanan Raju; Maximilian Nitschke; Hani Suleiman; Brian T. Saunders; Michael W. Johnson; Alexander M.C. Böhner; Susanne F. Viehmann; Derek J. Theisen; Nicole M. Kretzer; Carlos G. Briseño; Konstantin Zaitsev; Olga Ornatsky; Qing Chang; Javier A. Carrero; Jeffrey B. Kopp; Maxim N. Artyomov; Christian Kurts; Kenneth M. Murphy; Jeffrey H. Miner; Andrey S. Shaw
Dendritic cells (DCs) are thought to form a dendritic network across barrier surfaces and throughout organs, including the kidney, to perform an important sentinel function. However, previous studies of DC function used markers, such as CD11c or CX3CR1, that are not unique to DCs. Here, we evaluated the role of DCs in renal inflammation using a CD11c reporter mouse line and two mouse lines with DC-specific reporters, Zbtb46-GFP and Snx22-GFP. Multiphoton microscopy of kidney sections confirmed that most of the dendritically shaped CD11c+ cells forming a network throughout the renal interstitium expressed macrophage-specific markers. In contrast, DCs marked by Zbtb46-GFP or Snx22-GFP were less abundant, concentrated around blood vessels, and round in shape. We confirmed this pattern of localization using imaging mass cytometry. Motility measurements showed that resident macrophages were sessile, whereas DCs were motile before and after inflammation. Although uninflamed glomeruli rarely contained DCs, injury with nephrotoxic antibodies resulted in accumulation of ZBTB46 + cells in the periglomerular region. ZBTB46 identifies all classic DCs, which can be categorized into two functional subsets that express either CD103 or CD11b. Depletion of ZBTB46 + cells attenuated the antibody-induced kidney injury, whereas deficiency of the CD103+ subset accelerated injury through a mechanism that involved increased neutrophil infiltration. RNA sequencing 7 days after nephrotoxic antibody injection showed that CD11b+ DCs expressed the neutrophil-attracting cytokine CXCL2, whereas CD103+ DCs expressed high levels of several anti-inflammatory genes. These results provide new insights into the distinct functions of the two major DC subsets in glomerular inflammation.