Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole M. Pohl is active.

Publication


Featured researches published by Nicole M. Pohl.


Carcinogenesis | 2012

Decorin-mediated inhibition of colorectal cancer growth and migration is associated with E-cadherin in vitro and in mice

Xiuli Bi; Nicole M. Pohl; Zhibin Qian; George R. Yang; Yuan Gou; Grace Guzman; Andre Kajdacsy-Balla; Renato V. Iozzo; Wancai Yang

Previous studies have shown that decorin expression is significantly reduced in colorectal cancer tissues and cancer cells, and genetic deletion of the decorin gene is sufficient to cause intestinal tumor formation in mice, resulting from a downregulation of p21, p27(kip1) and E-cadherin and an upregulation of β-catenin signaling [Bi,X. et al. (2008) Genetic deficiency of decorin causes intestinal tumor formation through disruption of intestinal cell maturation. Carcinogenesis, 29, 1435-1440]. However, the regulation of E-cadherin by decorin and its implication in cancer formation and metastasis is largely unknown. Using a decorin knockout mouse model (Dcn(-/-) mice) and manipulated expression of decorin in human colorectal cancer cells, we found that E-cadherin, a protein that regulates cell-cell adhesion, epithelial-mesenchymal transition and metastasis, was almost completely lost in Dcn(-/-) mouse intestine, and loss of decorin and E-cadherin accelerated colon cancer cell growth and invasion in Dcn(-/-) mice. However, increasing decorin expression in colorectal cancer cells attenuated cancer cell malignancy, including inhibition of cancer cell proliferation, promotion of apoptosis and importantly, attenuation of cancer cell migration. All these changes were linked to the regulation of E-cadherin by decorin. Moreover, overexpression of decorin upregulated E-cadherin through increasing of E-cadherin protein stability as E-cadherin messenger RNA and promoter activity were not affected. Co-immunoprecipitation assay showed a physical binding between decorin and E-cadherin proteins. Taken together, our results provide direct evidence that decorin-mediated inhibition of colorectal cancer growth and migration are through the interaction with and stabilization of E-cadherin.


PLOS ONE | 2009

Transcriptional Regulation and Biological Functions of Selenium-Binding Protein 1 in Colorectal Cancer In Vitro and in Nude Mouse Xenografts

Nicole M. Pohl; Chang Tong; Wenfeng Fang; Xiuli Bi; Tianhong Li; Wancai Yang

Background It has been shown that selenium-binding protein 1 (SBP1) is significantly downregulated in different human cancers. Its regulation and function have not yet been established. Methodology and Principal Findings We show that the SBP1 promoter is hypermethylated in colon cancer tissues and human colon cancer cells. Treatment with 5′-Aza-2′-deoxycytidine leads to demethylation of the SBP1 promoter and to an increase of SBP1 promoter activity, rescues SBP1 mRNA and protein expression in human colon cancer cells. Additionally, overexpression of SBP1 sensitizes colon cancer cells to H2O2-induced apoptosis, inhibits cancer cell migration in vitro and inhibits tumor growth in nude mice. Conclusion and Significance These data demonstrate that SBP1 has tumor suppressor functions that are inhibited in colorectal cancer through epigenetic silencing.


Circulation Research | 2012

Enhanced Ca 2+ -Sensing Receptor Function in Idiopathic Pulmonary Arterial Hypertension

Aya Yamamura; Qiang Guo; Hisao Yamamura; Adriana M. Zimnicka; Nicole M. Pohl; Kimberly A. Smith; Ruby A. Fernandez; Amy Zeifman; Ayako Makino; Hui Dong; Jason X.-J. Yuan

Rationale: A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) in pulmonary arterial smooth muscle cells (PASMC) is an important stimulus for pulmonary vasoconstriction and vascular remodeling. Increased resting [Ca2+]cyt and enhanced Ca2+ influx have been implicated in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH). Objective: We examined whether the extracellular Ca2+-sensing receptor (CaSR) is involved in the enhanced Ca2+ influx and proliferation in IPAH-PASMC and whether blockade of CaSR inhibits experimental pulmonary hypertension. Methods and Results: In normal PASMC superfused with Ca2+-free solution, addition of 2.2 mmol/L Ca2+ to the perfusate had little effect on [Ca2+]cyt. In IPAH-PASMC, however, restoration of extracellular Ca2+ induced a significant increase in [Ca2+]cyt. Extracellular application of spermine also markedly raised [Ca2+]cyt in IPAH-PASMC but not in normal PASMC. The calcimimetic R568 enhanced, whereas the calcilytic NPS 2143 attenuated, the extracellular Ca2+-induced [Ca2+]cyt rise in IPAH-PASMC. Furthermore, the protein expression level of CaSR in IPAH-PASMC was greater than in normal PASMC; knockdown of CaSR in IPAH-PASMC with siRNA attenuated the extracellular Ca2+-mediated [Ca2+]cyt increase and inhibited IPAH-PASMC proliferation. Using animal models of pulmonary hypertension, our data showed that CaSR expression and function were both enhanced in PASMC, whereas intraperitoneal injection of the calcilytic NPS 2143 prevented the development of pulmonary hypertension and right ventricular hypertrophy in rats injected with monocrotaline and mice exposed to hypoxia. Conclusions: The extracellular Ca2+-induced increase in [Ca2+]cyt due to upregulated CaSR is a novel pathogenic mechanism contributing to the augmented Ca2+ influx and excessive PASMC proliferation in patients and animals with pulmonary arterial hypertension.


Carcinogenesis | 2010

Functional and physical interaction between the selenium-binding protein 1 (SBP1) and the glutathione peroxidase 1 selenoprotein

Wenfeng Fang; Marci Goldberg; Nicole M. Pohl; Xiuli Bi; Chang Tong; Bin Xiong; Alan M. Diamond; Wancai Yang

Selenium-binding protein (SBP) 1 is present in reduced levels in several cancer types as compared with normal tissues, and lower levels are associated with poor clinical prognosis. Another selenium-containing protein, glutathione peroxidase 1 (GPX1), has been associated with cancer risk and development. The interaction between these representatives of different classes of selenoproteins was investigated. Increasing SBP1 levels in either human colorectal or breast cancer cells by transfection of an expression construct resulted in the reduction of GPX1 enzyme activity. Increased expression of GPX1 in the same cell types resulted in the transcriptional and translational repression of SBP1, as evidenced by the reduction of SBP1 messenger RNA and protein and the inhibition of transcription measured using an SBP1 reporter construct. The opposing effects of SBP1 and GPX1 on each other were also observed when GPX1 was increased by supplementing the media of these tissue culture cells with selenium, and the effect of selenium on SBP1 was shown to be GPX1 dependent. Decreasing or increasing GPX1 levels in colonic epithelial cells of mice fed a selenium-deficient, -adequate or -supplemented diet resulted in the opposing effect on SBP1 levels. These data are explained in part by the demonstration that SBP1 and GPX1 form a physical association, as determined by coimmunoprecipitation and fluorescence resonance energy transfer assay. The results presented establish an interaction between two distinct selenium-containing proteins that may enhance the understanding of the mechanisms by which selenium and selenoproteins affect carcinogenesis in humans.


Cancer Research | 2010

PTPH1 Dephosphorylates and Cooperates with p38γ MAPK to Increase Ras Oncogenesis through PDZ-Mediated Interaction

Songwang Hou; Huiying Zhi; Nicole M. Pohl; Mathew Loesch; Xiaomei Qi; Rongshan Li; Zainab Basir; Guan Chen

Protein phosphatases are believed to coordinate with kinases to execute biological functions, but examples of such integrated activities, however, are still missing. In this report, we have identified protein tyrosine phosphatase H1 (PTPH1) as a specific phosphatase for p38gamma mitogen-activated protein kinase (MAPK) and shown their cooperative oncogenic activity through direct binding. p38gamma, a Ras effector known to act independent of its phosphorylation, was first shown to require its unique PDZ-binding motif to increase Ras transformation. Yeast two-hybrid screening and in vitro and in vivo analyses further identified PTPH1 as a specific p38gamma phosphatase through PDZ-mediated binding. Additional experiments showed that PTPH1 itself plays a role in Ras-dependent malignant growth in vitro and/or in mice by a mechanism depending on its p38gamma-binding activity. Moreover, Ras increases both p38gamma and PTPH1 protein expression and there is a coupling of increased p38gamma and PTPH1 protein expression in primary colon cancer tissues. These results reveal a coordinative oncogenic activity of a MAPK with its specific phosphatase and suggest that PDZ-mediated p38gamma/PTPH1 complex may be a novel target for Ras-dependent malignancies.


Cancer Research | 2006

p38γ Mitogen-Activated Protein Kinase Integrates Signaling Crosstalk between Ras and Estrogen Receptor to Increase Breast Cancer Invasion

Xiaomei Qi; Jun Tang; Mathew Loesch; Nicole M. Pohl; Serhan Alkan; Guan Chen

Ras is believed to stimulate invasion and growth by different effector pathways, and yet, the existence of such effectors under physiologic conditions has not been shown. Estrogen receptor (ER), on the other hand, is both anti-invasive and proliferative in human breast cancer, with mechanisms for these paradoxical actions remaining largely unknown. Our previous work showed an essential role of p38gamma mitogen-activated protein kinase in Ras transformation in rat intestinal epithelial cells, and here, we show that p38gamma integrates invasive antagonism between Ras and ER to increase human breast cancer invasion without affecting their proliferative activity. Ras positively regulates p38gamma expression, and p38gamma in turn mediates Ras nonmitogenic signaling to increase invasion. Expression of the Ras/p38gamma axis, however, is trans-suppressed by ER that inhibits invasion and stimulates growth also by distinct mechanisms. Analysis of ER and its cytoplasmic localized mutant reveals that ER additionally binds to p38gamma protein, leading to its specific down-regulation in the nuclear compartment. A p38gamma-antagonistic activity of ER was further shown in a panel of breast cancer cell lines and was shown independent of estrogens by both ER depletion and ER expression. These results revealed that both Ras and ER use distinct pathways to regulate breast cancer growth and invasion, and that p38gamma specifically integrates their antagonistic activity to stimulate cell invasion. Selective targeting of p38gamma-dependent invasion pathways may be a novel strategy to control breast cancer progression.


American Journal of Respiratory Cell and Molecular Biology | 2015

Notch Activation of Ca(2+) Signaling in the Development of Hypoxic Pulmonary Vasoconstriction and Pulmonary Hypertension.

Kimberly A. Smith; Guillaume Voiriot; Haiyang Tang; Dustin R. Fraidenburg; Shanshan Song; Hisao Yamamura; Aya Yamamura; Qiang Guo; Jun Wan; Nicole M. Pohl; Mohammad Tauseef; Rolf Bodmer; Karen Ocorr; Patricia A. Thistlethwaite; Gabriel G. Haddad; Frank L. Powell; Ayako Makino; Dolly Mehta; Jason X.-J. Yuan

Hypoxic pulmonary vasoconstriction (HPV) is an important physiological response that optimizes the ventilation/perfusion ratio. Chronic hypoxia causes vascular remodeling, which is central to the pathogenesis of hypoxia-induced pulmonary hypertension (HPH). We have previously shown that Notch3 is up-regulated in HPH and that activation of Notch signaling enhances store-operated Ca(2+) entry (SOCE), an important mechanism that contributes to pulmonary arterial smooth muscle cell (PASMC) proliferation and contraction. Here, we investigate the role of Notch signaling in HPV and hypoxia-induced enhancement of SOCE. We examined SOCE in human PASMCs exposed to hypoxia and pulmonary arterial pressure in mice using the isolated perfused/ventilated lung method. Wild-type and canonical transient receptor potential (TRPC) 6(-/-) mice were exposed to chronic hypoxia to induce HPH. Inhibition of Notch signaling with a γ-secretase inhibitor attenuates hypoxia-enhanced SOCE in PASMCs and hypoxia-induced increase in pulmonary arterial pressure. Our results demonstrate that hypoxia activates Notch signaling and up-regulates TRPC6 channels. Additionally, treatment with a Notch ligand can mimic hypoxic responses. Finally, inhibition of TRPC6, either pharmacologically or genetically, attenuates HPV, hypoxia-enhanced SOCE, and the development of HPH. These results demonstrate that hypoxia-induced activation of Notch signaling mediates HPV and the development of HPH via functional activation and up-regulation of TRPC6 channels. Understanding the molecular mechanisms that regulate cytosolic free Ca(2+) concentration and PASMC proliferation is critical to elucidation of the pathogenesis of HPH. Targeting Notch regulation of TRPC6 will be beneficial in the development of novel therapies for pulmonary hypertension associated with hypoxia.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2016

Pathogenic role of calcium-sensing receptors in the development and progression of pulmonary hypertension

Haiyang Tang; Aya Yamamura; Hisao Yamamura; Shanshan Song; Dustin R. Fraidenburg; Jiwang Chen; Yali Gu; Nicole M. Pohl; Tong Zhou; Laura Jiménez-Pérez; Ramon J. Ayon; Ankit A. Desai; David Goltzman; Franz Rischard; Zain Khalpey; Stephen M. Black; Joe G. N. Garcia; Ayako Makino; Jason X.-J. Yuan

An increase in cytosolic free Ca(2+) concentration ([Ca(2+)]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and a critical stimulation for PASMC proliferation and migration. Previously, we demonstrated that expression and function of calcium sensing receptors (CaSR) in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH) and animals with experimental pulmonary hypertension (PH) were greater than in PASMC from normal subjects and control animals. However, the mechanisms by which CaSR triggers Ca(2+) influx in PASMC and the implication of CaSR in the development of PH remain elusive. Here, we report that CaSR functionally interacts with TRPC6 to regulate [Ca(2+)]cyt in PASMC. Downregulation of CaSR or TRPC6 with siRNA inhibited Ca(2+)-induced [Ca(2+)]cyt increase in IPAH-PASMC (in which CaSR is upregulated), whereas overexpression of CaSR or TRPC6 enhanced Ca(2+)-induced [Ca(2+)]cyt increase in normal PASMC (in which CaSR expression level is low). The upregulated CaSR in IPAH-PASMC was also associated with enhanced Akt phosphorylation, whereas blockade of CaSR in IPAH-PASMC attenuated cell proliferation. In in vivo experiments, deletion of the CaSR gene in mice (casr(-/-)) significantly inhibited the development and progression of experimental PH and markedly attenuated acute hypoxia-induced pulmonary vasoconstriction. These data indicate that functional interaction of upregulated CaSR and upregulated TRPC6 in PASMC from IPAH patients and animals with experimental PH may play an important role in the development and progression of sustained pulmonary vasoconstriction and pulmonary vascular remodeling. Blockade or downregulation of CaSR and/or TRPC6 with siRNA or miRNA may be a novel therapeutic strategy to develop new drugs for patients with pulmonary arterial hypertension.


Circulation Research | 2013

Dihydropyridine Ca2+ Channel Blockers Increase Cytosolic [Ca2+] by Activating Ca2+-sensing Receptors in Pulmonary Arterial Smooth Muscle Cells

Aya Yamamura; Hisao Yamamura; Qiang Guo; Adriana M. Zimnicka; Jun Wan; Eun A. Ko; Kimberly A. Smith; Nicole M. Pohl; Shanshan Song; Amy Zeifman; Ayako Makino; Jason X.-J. Yuan

Rationale: An increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for PASMC proliferation and pulmonary vascular remodeling. The dihydropyridine Ca2+ channel blockers, such as nifedipine, have been used for treatment of idiopathic pulmonary arterial hypertension (IPAH). Objective: Our previous study demonstrated that the Ca2+-sensing receptor (CaSR) was upregulated and the extracellular Ca2+-induced increase in [Ca2+]cyt was enhanced in PASMC from patients with IPAH and animals with experimental pulmonary hypertension. Here, we report that the dihydropyridines (eg, nifedipine) increase [Ca2+]cyt by activating CaSR in PASMC from IPAH patients (in which CaSR is upregulated), but not in normal PASMC. Methods and Results: The nifedipine-mediated increase in [Ca2+]cyt in IPAH-PASMC was concentration dependent with a half maximal effective concentration of 0.20 µmol/L. Knockdown of CaSR with siRNA in IPAH-PASMC significantly inhibited the nifedipine-induced increase in [Ca2+]cyt, whereas overexpression of CaSR in normal PASMC conferred the nifedipine-induced rise in [Ca2+]cyt. Other dihydropyridines, nicardipine and Bay K8644, had similar augmenting effects on the CaSR-mediated increase in [Ca2+]cyt in IPAH-PASMC; however, the nondihydropyridine blockers, such as diltiazem and verapamil, had no effect on the CaSR-mediated rise in [Ca2+]cyt. Conclusions: The dihydropyridine derivatives increase [Ca2+]cyt by potentiating the activity of CaSR in PASMC independently of their blocking (or activating) effect on Ca2+ channels; therefore, it is possible that the use of dihydropyridine Ca2+ channel blockers (eg, nifedipine) to treat IPAH patients with upregulated CaSR in PASMC may exacerbate pulmonary hypertension.


American Journal of Physiology-cell Physiology | 2014

Activation of Notch signaling by short-term treatment with Jagged-1 enhances store-operated Ca2+ entry in human pulmonary arterial smooth muscle cells

Hisao Yamamura; Aya Yamamura; Eun A. Ko; Nicole M. Pohl; Kimberly A. Smith; Amy Zeifman; Frank L. Powell; Patricia A. Thistlethwaite; Jason X.-J. Yuan

Notch signaling plays a critical role in controlling proliferation and differentiation of pulmonary arterial smooth muscle cells (PASMC). Upregulated Notch ligands and Notch3 receptors in PASMC have been reported to promote the development of pulmonary vascular remodeling in patients with pulmonary arterial hypertension (PAH) and in animals with experimental pulmonary hypertension. Activation of Notch receptors by their ligands leads to the cleavage of the Notch intracellular domain (NICD) to the cytosol by γ-secretase; NICD then translocates into the nucleus to regulate gene transcription. In this study, we examined whether short-term activation of Notch functionally regulates store-operated Ca(2+) entry (SOCE) in human PASMC. Treatment of PASMC with the active fragment of human Jagged-1 protein (Jag-1) for 15-60 min significantly increased the amplitude of SOCE induced by passive deletion of Ca(2+) from the intracellular stores, the sarcoplasmic reticulum (SR). The Jag-1-induced enhancement of SOCE was time dependent: the amplitude was maximized at 30 min of treatment with Jag-1, which was closely correlated with the time course of Jag-1-mediated increase in NICD protein level. The scrambled peptide of Jag-1 active fragment had no effect on SOCE. Inhibition of γ-secretase by N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) significantly attenuated the Jag-1-induced augmentation of SOCE. In addition to the short-term effect, prolonged treatment of PASMC with Jag-1 for 48 h also markedly enhanced the amplitude of SOCE. These data demonstrate that short-term activation of Notch signaling enhances SOCE in PASMC; the NICD-mediated functional interaction with store-operated Ca(2+) channels (SOC) may be involved in the Jag-1-mediated enhancement of SOCE in human PASMC.

Collaboration


Dive into the Nicole M. Pohl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wancai Yang

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kimberly A. Smith

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Aya Yamamura

Kinjo Gakuin University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Zeifman

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Adriana M. Zimnicka

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge