Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole M. Verrills is active.

Publication


Featured researches published by Nicole M. Verrills.


Journal of Clinical Investigation | 2007

FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia.

Paolo Neviani; Ramasamy Santhanam; Joshua J. Oaks; Anna M. Eiring; Mario Notari; Bradley W. Blaser; Shujun Liu; Rossana Trotta; Natarajan Muthusamy; Carlo Gambacorti-Passerini; Brian J. Druker; Jorge Cortes; Guido Marcucci; Ching-Shih Chen; Nicole M. Verrills; Denis Roy; Michael A. Caligiuri; Clara D. Bloomfield; John C. Byrd; Danilo Perrotti

Blast crisis chronic myelogenous leukemia (CML-BC) and Philadelphia chromosome-positive (Ph1-positive) acute lymphocytic leukemia (ALL) are 2 fatal BCR/ABL-driven leukemias against which Abl kinase inhibitors fail to induce a long-term response. We recently reported that functional loss of protein phosphatase 2A (PP2A) activity is important for CML blastic transformation. We assessed the therapeutic potential of the PP2A activator FTY720 (2-amino-2-[2-(4-octylphenyl)ethyl]-1,3-propanediol hydrochloride), an immunomodulator in Phase III trials for patients with multiple sclerosis or undergoing organ transplantation, in CML-BC and Ph1 ALL patient cells and in in vitro and in vivo models of these BCR/ABL+ leukemias. Our data indicate that FTY720 induces apoptosis and impairs clonogenicity of imatinib/dasatinib-sensitive and -resistant p210/p190(BCR/ABL) myeloid and lymphoid cell lines and CML-BC(CD34+) and Ph1 ALL(CD34+/CD19+) progenitors but not of normal CD34+ and CD34+/CD19+ bone marrow cells. Furthermore, pharmacologic doses of FTY720 remarkably suppress in vivo p210/p190(BCR/ABL)-driven [including p210/p190(BCR/ABL)(T315I)] leukemogenesis without exerting any toxicity. Altogether, these results highlight the therapeutic relevance of rescuing PP2A tumor suppressor activity in Ph1 leukemias and strongly support the introduction of the PP2A activator FTY720 in the treatment of CML-BC and Ph1 ALL patients.


Electrophoresis | 2000

Subproteomics based upon protein cellular location and relative solubilities in conjunction with composite two-dimensional electrophoresis gels

Stuart J. Cordwell; Amanda Nouwens; Nicole M. Verrills; David J. Basseal; Bradley J. Walsh

Progress in the field of proteomics is dependent upon an ability to visualise close to an entire protein complement via a given array technology. These efforts have previously centred upon two‐dimensional gel electrophoresis in association with immobilised pH gradients in the first dimension. However, limitations in this technology, including the inability to separate hydrophobic, basic, and low copy number proteins have hindered the analysis of complete proteomes. The challenge is now to overcome these limitations through access to new technology and improvements in existing methodologies. Proteomics can no longer be equated with a single two‐dimensional electrophoresis gel. Greater information can be obtained using targeted biological approaches based upon sample prefractionation into specific cellular compartments to determine protein location, while novel immobilised pH gradients spanning single pH units can be used to display poorly abundant proteins due to their increased resolving power and loading capacity. In this study, we show the effectiveness of a combined use of two differential subproteomes (as defined by relative solubilities, cellular location and narrow‐range immobilised pH gradients) to increase the resolution of proteins contained on two‐dimensional gels. We also present new results confirming that this method is capable of displaying up to a further 45% of a given microbial proteome. Subproteomics, utilising up to 40 two‐dimensional gels per sample will become a powerful tool for near‐to‐total proteome analysis in the postgenome era. Furthermore, this new approach can direct biological focus towards molecules of specific interest within complex cells and thus simplify efforts in discovery‐based proteome research.


Chemistry & Biology | 2003

Microtubule alterations and mutations induced by desoxyepothilone B: implications for drug-target interactions.

Nicole M. Verrills; Claudia Flemming; Marjorie Liu; Michael T. G. Ivery; Gary S. Cobon; Murray D. Norris; Michelle Haber; Maria Kavallaris

Epothilones, like paclitaxel, bind to beta-tubulin and stabilize microtubules. We selected a series of four leukemia sublines that display increasing levels of resistance to the epothilone analog desoxyepothilone B (dEpoB). The dEpoB cells selected in 30-140 nM were approximately 15-fold cross-resistant to paclitaxel, while 300 nM selected cells were 467-fold resistant to this agent. The dEpoB-selected cells are hypersensitive to microtubule destabilizing agents, and express increased levels of class III beta-tubulin and MAP4. A novel class I beta-tubulin mutation, A231T, that affects microtubule stability but does not alter paclitaxel binding, was identified. The 300 nM selected cells acquired a second mutation, Q292E, situated near the M loop of class I beta-tubulin. These cells fail to undergo drug-induced tubulin polymerization due to dramatically reduced drug binding. The dEpoB-resistant leukemia cells provide novel insights into microtubule dynamics and, in particular, drug-target interactions.


Journal of Histochemistry and Cytochemistry | 2005

Tissue-specific tropomyosin isoform composition.

Galina Schevzov; Bernadette Vrhovski; Nicole S. Bryce; Sarah Elmir; Min Ru Qiu; Geraldine M. O'Neill; Nan Yang; Nicole M. Verrills; Maria Kavallaris; Peter Gunning

Four distinct genes encode tropomyosin (Tm) proteins, integral components of the actin microfilament system. In non-muscle cells, over 40 Tm isoforms are derived using alternative splicing. Distinct populations of actin filaments characterized by the composition of these Tm isoforms are found differentially sorted within cells (Gunning et al. 1998b). We hypothesized that these distinct intracellular compartments defined by the association of Tm isoforms may allow for independent regulation of microfilament function. Consequently, to understand the molecular mechanisms that give rise to these different microfilaments and their regulation, a cohort of fully characterized isoform-specific Tm antibodies was required. The characterization protocol initially involved testing the specificity of the antibodies on bacterially produced Tm proteins. We then confirmed that these Tm antibodies can be used to probe the expression and subcellular localization of different Tm isoforms by Western blot analysis, immunofluorescence staining of cells in culture, and immunohistochemistry of paraffin wax-embedded mouse tissues. These Tm antibodies, therefore, have the capacity to monitor specific actin filament populations in a range of experimental systems.


Cancer Research | 2010

Essential Requirement for PP2A Inhibition by the Oncogenic Receptor c-KIT Suggests PP2A Reactivation as a Strategy to Treat c-KIT+ Cancers

Kathryn G. Roberts; Amanda M. Smith; Fiona McDougall; Helen Carpenter; Martin P. Horan; Paolo Neviani; Jason Powell; Daniel Thomas; Mark A. Guthridge; Danilo Perrotti; Alistair T. R. Sim; Leonie K. Ashman; Nicole M. Verrills

Oncogenic mutations of the receptor tyrosine kinase c-KIT play an important role in the pathogenesis of gastrointestinal stromal tumors, systemic mastocytosis, and some acute myeloid leukemias (AML). Although juxtamembrane mutations commonly detected in gastrointestinal stromal tumor are sensitive to tyrosine kinase inhibitors, the kinase domain mutations frequently encountered in systemic mastocytosis and AML confer resistance and are largely unresponsive to targeted inhibition by the existing agent imatinib. In this study, we show that myeloid cells expressing activated c-KIT mutants that are imatinib sensitive (V560G) or imatinib resistant (D816V) can inhibit the tumor suppressor activity of protein phosphatase 2A (PP2A). This effect was associated with the reduced expression of PP2A structural (A) and regulatory subunits (B55alpha, B56alpha, B56gamma, and B56delta). Overexpression of PP2A-Aalpha in D816V c-KIT cells induced apoptosis and inhibited proliferation. In addition, pharmacologic activation of PP2A by FTY720 reduced proliferation, inhibited clonogenic potential, and induced apoptosis of mutant c-KIT(+) cells, while having no effect on wild-type c-KIT cells or empty vector controls. FTY720 treatment caused the dephosphorylation of the D816V c-KIT receptor and its downstream signaling targets pAkt, pSTAT5, and pERK1/2. Additionally, in vivo administration of FTY720 delayed the growth of V560G and D816V c-KIT tumors, inhibited splenic and bone marrow infiltration, and prolonged survival. Our findings show that PP2A inhibition is essential for c-KIT-mediated tumorigenesis, and that reactivating PP2A may offer an attractive strategy to treat drug-resistant c-KIT(+) cancers.


Nature Medicine | 2013

The E3 ubiquitin ligase midline 1 promotes allergen and rhinovirus-induced asthma by inhibiting protein phosphatase 2A activity

Adam Collison; Luke Hatchwell; Nicole M. Verrills; Peter Wark; Ana Pereira de Siqueira; Melinda Tooze; Helen Carpenter; Anthony S. Don; Jonathan C. Morris; Nives Zimmermann; Nathan W. Bartlett; Marc E. Rothenberg; Sebastian L. Johnston; Paul S. Foster; Joerg Mattes

Allergic airway inflammation is associated with activation of innate immune pathways by allergens. Acute exacerbations of asthma are commonly associated with rhinovirus infection. Here we show that, after exposure to house dust mite (HDM) or rhinovirus infection, the E3 ubiquitin ligase midline 1 (MID1) is upregulated in mouse bronchial epithelium. HDM regulates MID1 expression in a Toll-like receptor 4 (TLR4)– and tumor necrosis factor–related apoptosis-inducing ligand (TRAIL)-dependent manner. MID1 decreases protein phosphatase 2A (PP2A) activity through association with its catalytic subunit PP2Ac. siRNA-mediated knockdown of MID1 or pharmacological activation of PP2A using a nonphosphorylatable FTY720 analog in mice exposed to HDM reduces airway hyperreactivity and inflammation, including the expression of interleukin-25 (IL-25), IL-33 and CCL20, IL-5 and IL-13 release, nuclear factor (NF)κB activity, p38 mitogen-activated protein kinase (MAPK) phosphorylation, accumulation of eosinophils, T lymphocytes and myeloid dendritic cells, and the number of mucus-producing cells. MID1 inhibition also limited rhinovirus-induced exacerbation of allergic airway disease. We found that MID1 was upregulated in primary human bronchial epithelial cells upon HDM or rhinovirus exposure, and this correlated with TRAIL and CCL20 expression. Together, these findings identify a key role of MID1 in allergic airway inflammation and links innate immune pathway activation to the development and exacerbation of asthma.


American Journal of Respiratory and Critical Care Medicine | 2011

Identification of Novel Diagnostic Biomarkers for Asthma and Chronic Obstructive Pulmonary Disease

Nicole M. Verrills; Jennifer A. Irwin; Xiao Yan He; Lisa Wood; Heather Powell; Jodie L. Simpson; Vanessa M. McDonald; Alistair T. R. Sim; Peter G. Gibson

RATIONALE Proteomics may identify a useful panel of biomarkers for identification of asthma and chronic obstructive pulmonary disease (COPD). OBJECTIVES To conduct an unsupervised analysis of peripheral blood proteins in well-characterized subjects with asthma and COPD, and identify and validate a biomarker panel for disease discrimination. METHODS Two-dimensional difference gel electrophoresis was used to separate plasma proteins from healthy control subjects, stable patients with asthma, and individuals with COPD. Candidate protein markers were identified by matrix assisted laser desorption ionization time of flight mass spectrometry and subsequently validated in two populations via immunoassay. A panel of four biomarkers was selected and their ability to distinguish between groups was assessed in isolation and in combination in two separate validation populations. MEASUREMENTS AND MAIN RESULTS Seventy-two protein spots displayed significantly different expression levels between the three subject groupings (P < 0.05). Fifty-eight were positively identified, representing 20 unique proteins. A panel of four biomarkers (α(2)-macroglobulin, haptoglobin, ceruloplasmin, and hemopexin) was able to discriminate with statistical significance between the clinical groups of patients with asthma, patients with COPD, and control subjects, and these results were confirmed in a second clinical population of older adults with airflow obstruction. CONCLUSIONS Proteomics has identified novel biomarkers for asthma and COPD, and shown that the iron metabolism pathways and acute-phase response may be involved in the pathogenesis of airway disease. The panel of peripheral blood biomarkers has the potential to become an extremely useful addition to the clinical diagnosis and management of respiratory disease.


Nucleic Acids Research | 2014

Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons

Belinda J. Goldie; Matthew D. Dun; Minjie Lin; Nathan D. Smith; Nicole M. Verrills; Christopher V. Dayas; Murray J. Cairns

Rapid input-restricted change in gene expression is an important aspect of synaptic plasticity requiring complex mechanisms of post-transcriptional mRNA trafficking and regulation. Small non-coding miRNA are uniquely poised to support these functions by providing a nucleic-acid-based specificity component for universal-sequence-dependent RNA binding complexes. We investigated the subcellular distribution of these molecules in resting and potassium chloride depolarized human neuroblasts, and found both selective enrichment and depletion in neurites. Depolarization was associated with a neurite-restricted decrease in miRNA expression; a subset of these molecules was recovered from the depolarization medium in nuclease resistant extracellular exosomes. These vesicles were enriched with primate specific miRNA and the synaptic-plasticity-associated protein MAP1b. These findings further support a role for miRNA as neural plasticity regulators, as they are compartmentalized in neurons and undergo activity-associated redistribution or release into the extracellular matrix.


Cell Cycle | 2011

Controlling the cell cycle: the role of calcium/calmodulin-stimulated protein kinases I and II

Kathryn A. Skelding; John A.P. Rostas; Nicole M. Verrills

Many studies have implicated Ca2+ and calmodulin (CaM) as regulators of the cell cycle. Ca2+/CaM-stimulated proteins, including the family of multifunctional Ca2+/CaM-stimulated protein kinases (CaMK), have also been identified as mediators of cell cycle progression. CaMKII is the best-characterized member of this family, and is regulated by multi-site phosphorylation and targeting. Using pharmacological inhibitors that were believed to be specific for CaMKII, CaMKII has been implicated in every phase of the cell cycle. However, these ‘specific’ inhibitors also produce effects on other CaMKs. These additional effects are usually ignored, and the effects of the inhibitors are normally attributed to CaMKII without further investigation. Using new specific molecular techniques, it has become clear that CaMKI is an important regulator of G1, whereas CaMKII is essential for regulating G2/M and the metaphase-anaphase transition. If the mechanisms controlling these events can be fully elucidated, new targets for controlling proliferative diseases may be identified.


Current Pharmaceutical Design | 2005

Improving the targeting of tubulin-binding agents: lessons from drug resistance studies.

Nicole M. Verrills; Maria Kavallaris

Natural product drugs that target the tubulin/microtubule system remain an important component in the therapeutic arsenal to treat many types of malignancies. Agents such as the taxanes and vinca alkaloids bind to beta-tubulin and disrupt microtubule dynamics by inducing a potent mitotic block and subsequent cell death. Understanding why certain cancers do not respond to treatment or develop resistance has been the subject of numerous studies in recent years. An increasing body of evidence suggests that alterations in the drug target, such as tubulin mutations, altered microtubule dynamics, altered tubulin isotype expression, and modifications in microtubule regulatory proteins, are key mechanisms of antimicrotubule drug resistance. In addition, recent work indicates that other cytoskeletal proteins that can regulate microtubule dynamics through signaling or structural interactions may be important determinants of antimicrotubule resistance. As our understanding of drug action and resistance mechanisms has increased, we can now begin to exploit these to design strategies that overcome, or counteract resistance, hence improving the efficacy of antimicrotubule agents for the treatment of cancer. This review highlights the major areas of investigation as they relate to the tubulin/microtubule system and discusses opportunities that potentially exist for improved therapeutic benefit in the treatment of drug resistant disease.

Collaboration


Dive into the Nicole M. Verrills's collaboration.

Top Co-Authors

Avatar

Maria Kavallaris

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan C. Morris

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Alaina J. Ammit

Woolcock Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony S. Don

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathryn G. Roberts

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge