Nicole Meissner
Montana State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicole Meissner.
Journal of Immunology | 2003
Nicole Meissner; Jay R. Radke; Jodi F. Hedges; Michael W. White; Michael S. Behnke; Shannon Bertolino; Mitchell S. Abrahamsen; Mark A. Jutila
Gene expression profiles were compared in circulating bovine GD3.5+ (CD8−) and GD3.5− (predominantly CD8+) γδ T cells using serial analysis of gene expression (SAGE). Approximately 20,000 SAGE tags were generated from each library. A comparison of the two libraries demonstrated 297 and 173 tags representing genes with 5-fold differential expression in GD3.5+ and GD3.5− γδ T cells, respectively. Consistent with their localization into sites of inflammation, GD3.5+ γδ T cells appeared transcriptionally and translationally more active than GD3.5− γδ cells. GD3.5− γδ T cells demonstrated higher expression of the cell proliferation inhibitor BAP 37, which was associated with their less activated gene expression phenotype. The immune regulatory and apoptosis-inducing molecule, galectin-1, was identified as a highly abundant molecule and was higher in GD3.5+γδ T cells. Surface molecules attributed to myeloid cells, such as CD14, CD68, and scavenger receptor-1, were identified in both populations. Furthermore, expression of B lymphocyte-induced maturation protein, a master regulator of B cell and myeloid cell differentiation, was identified by SAGE analysis and was confirmed at the RNA level to be selectively expressed in γδ T cells vs αβ T cells. These results provide new insights into the inherent differences between circulating γδ T cell subsets.
Journal of Leukocyte Biology | 2003
Jodi F. Hedges; Diane Cockrell; Larissa Jackiw; Nicole Meissner; Mark A. Jutila
To elucidate the functions of circulating γδ T cells, in the absence of antigen stimulation, the differential gene expression of two circulating γδ T cell subsets was analyzed. The two subsets, with distinct trafficking phenotypes in young calves, were GD3.5+, CD8−, WC1+ or GD3.5−, CD2+, WC1−, and 90–100% CD8+ and were sorted based on GD3.5 and γδ T cell receptor expression. Results from two different human arrays probed with cDNA from these γδ T cell subsets indicated that they have markedly different tissue‐specific functions. The genes preferentially expressed by GD3.5+ (CD8−) γδ T cells demonstrated that they were highly activated, proliferative, and inflammatory, whereas those expressed by GD3.5− (primarily CD8+) γδ cells were involved in promoting quiescence, consistent with a role for γδ T cells as sentinel mucosal cells, and several were interferon‐regulated genes. Gene expression and phenotypic assays indicated that CD8+ γδ T cells were apoptotic, whereas CD8− γδ T cells were apoptosis‐resistant. Differential expression of multiple genes was confirmed in both arrays: That of 14 genes was confirmed by quantitative reverse transcriptase‐polymerase chain reaction and that of seven proteins was confirmed by flow cytometry. This novel, genomic analysis of circulating γδ T cell subsets, without confounding effects of the tissue microenvironment, offers new insight into the biology and development of neonatal γδ T cells.
Journal of Immunology | 2005
Nicole Meissner; Steve D. Swain; Mike Tighe; Ann Harmsen; Allen G. Harmsen
Despite the advent of highly active antiretroviral therapy, pulmonary complications in AIDS are a common clinical problem. Pneumocystis jiroveci infection causes a life-threatening pneumonia, especially in individuals with CD4 T cell deficiencies as occurs in AIDS. Although Pneumocystis sp. is an extracellular fungal pathogen, CD8 T cells are the predominant lymphocyte recruited to the lung in CD4-deficient humans and mice during Pneumocystis pneumonia, and we have found that these CD8 T cells are responsible for subsequent lung damage in CD4 T cell-depleted mice. Comparing CD4 T cell-depleted IFN-α receptor knockout (KO) mice to wild-type mice, we found that this CD8 T cell recruitment and lung damage is type I IFN (IFN-αβ) dependent. However, in both CD4 competent, wild-type and IFN-α receptor (IFNAR) KO mice, Pneumocystis infection leads to an eosinophilic granulocyte influx with bronchial epithelial changes as seen in asthma. This response is delayed in IFNAR KO mice, as is pathogen clearance. Although the inflammation is transient in wild-type animals and resolves upon Pneumocystis clearance, it is more severe and persists through day 35 postinfection in IFNAR KO mice, leading to fibrosis. In addition, IFNAR KO, but not wild-type, mice mount a Pneumocystis-specific IgE response, an indicator of allergic sensitization. Thus, in the absence of IFNAR signaling and CD4 T cells, Pneumocystis-mediated lung damage does not occur, whereas in CD4-competent animals, the absence of IFNAR signaling results in an exacerbated Th2 response, asthma-like symptoms, and fibrosis. Therefore, both CD4 T cell- and type I IFN-mediated mechanisms can determine pulmonary complications from Pneumocystis infection.
American Journal of Pathology | 2010
Nicole Meissner; Steve D. Swain; Kate McInnerney; Soo Han; Allen G. Harmsen
Immune-reconstitution after highly active antiretroviral therapy (HAART) is often incomplete, and some HIV-infected individuals fail to regenerate type-I interferon (IFN)-producing pDCs. We recently demonstrated that during Pneumocystis (PC) infection in CD4 T cell-competent mice the absence of type-I IFN signaling results in chronic pulmonary inflammation and fibrosis despite clearance. Because the mechanisms involved are poorly understood, we further characterized the role of type-I IFN signaling in immune responses to PC. We show that type-I IFN signaling around day 7 postinfection is critical to the outcome of inflammation. Microarray analysis of pulmonary CD11c(+) cells revealed that at day 7 post infection, wild-type cells up-regulated type-I IFN-responsive genes as well as SOCS1, which is a critical negative-regulator of type-I IFN and IFN-gamma signaling. This was associated with an eosinophilic lung inflammation, PC clearance, and complete restitution. However, pulmonary CD11c(+) cells from IFNAR(-/-) mice demonstrated increased tumor necrosis factor (TNF)-alpha production and lacked SOCS1-induction at day 7. This was followed by a transient lymphocytic and IFN-gamma response before switching to a chronic eosinophilic inflammation of the lung. Early neutralization of TNF-alpha did not prevent chronic inflammation in IFNAR(-/-) mice, but treatment with an anti-IFN-gamma antibody did. We propose that during PC lung infection type-I IFNs induce SOCS1-associated regulatory mechanisms, which prevent excessive IFN-gamma-mediated responses that cause chronic lung damage. Therefore, partial immune-reconstitution in AIDS, attributable to reduced type-I IFN actions, might disrupt regulatory aspects of inflammation, causing unexplained chronic pulmonary complications as seen in some patients during HAART.
Journal of Immunology | 2005
Nicole Meissner; Frances E. Lund; Soo Han; Allen G. Harmsen
Pneumocystis, a fungal, extracellular pathogen causes a life-threatening pneumonia in patients with severe immunodeficiencies. In the absence of CD4 T cells, Pneumocystis infection results in vigorous CD8 T cell influx into the alveolar and interstitial spaces of the lung. This response results in lung damage characterized by low pO2 and albumin leakage into the bronchoalveolar lavage fluid similar to other CD8 T cell-mediated interstitial lung diseases. How this extracellular pathogen elicits a CD8 T cell response is not clear, and it was the aim of our study to determine the Ag specificity of the recruited CD8 T cells and to determine whether MHC class I (MHC I) expression was necessary to initiate lung damage. Using an adoptive T cell-transfer model with either polyclonal wild-type CD8 T cells or transgenic influenza virus-specific CD8 T cells we found that CD8 T cell recruitment is Ag-specific and requires the continuous presence of the Pneumocystis pathogen. Bone marrow chimera experiments using Rag-1 and β2-microglobulin-deficient mice as hosts demonstrated a requirement for MHC I expression on nonbone marrow-derived cells of the lung. This suggests either direct processing of Pneumocystis Ags by nonbone marrow-derived cells of the lung or the induction of lung damage triggered by a lung-specific autoantigen. Using perforin-, Fas-, and IFN-γ-deficient animals, we showed that these molecules are not directly involved in the CD8-mediated lung damage. However, CD8 T cell-mediated lung damage is Ag-specific is induced by a MHC I-expressing nonbone marrow-derived cell in the lung and is dependent on the continued presence of live Pneumocystis.
Frontiers in Microbiology | 2014
Sanjib K. Shrestha; Cheng-Wei Tom Chang; Nicole Meissner; John Oblad; Jaya P. Shrestha; Kevin N. Sorensen; Michelle Grilley; Jon Y. Takemoto
K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20′s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were determined. Effects on Cryptococcus neoformans H-99 infectivity were determined with a preventive murine lung infection model. The antifungal mechanism of action was studied using intact fungal cells, yeast lipid mutants, and small unilamellar lipid vesicles. K20 exhibited broad-spectrum in vitro antifungal activities but not antibacterial activities. Pulmonary, single dose-administration of K20 reduced C. neoformans lung infection rates 4-fold compared to controls. Hemolysis and half-maximal cytotoxicities of mammalian cells occurred at concentrations that were 10 to 32-fold higher than fungicidal MICs. With fluorescein isothiocyanate (FITC), 20–25 mg/L K20 caused staining of >95% of C. neoformans and Fusarium graminearum cells and at 31.3 mg/L caused rapid leakage (30–80% in 15 min) of calcein from preloaded small unilamellar lipid vesicles. K20 appears to be a broad-spectrum fungicide, capable of reducing the infectivity of C. neoformans, and exhibits low hemolytic activity and mammalian cell toxicity. It perturbs the plasma membrane by mechanisms that are lipid modulated. K20 is a novel amphiphilic aminoglycoside amenable to scalable production and a potential lead antifungal for therapeutic and crop protection applications.
Journal of Immunology | 2011
David Taylor; Michelle Wilkison; Jovanka M. Voyich; Nicole Meissner
We recently demonstrated that lack of type I IFN signaling (IFNAR knockout) in lymphocyte-deficient mice (IFrag−/−) results in bone marrow (BM) failure after Pneumocystis lung infection, whereas lymphocyte-deficient mice with intact IFNAR (RAG−/−) had normal hematopoiesis. In the current work, we performed studies to define further the mechanisms involved in the induction of BM failure in this system. BM chimera experiments revealed that IFNAR expression was required on BM-derived but not stroma-derived cells to prevent BM failure. Signals elicited after day 7 postinfection appeared critical in determining BM cell fate. We observed caspase-8– and caspase-9–mediated apoptotic cell death, beginning with neutrophils. Death of myeloid precursors was associated with secondary oxidative stress, and decreasing colony-forming activity in BM cell cultures. Treatment with N-acetylcysteine could slow the progression of, but not prevent, BM failure. Type I IFN signaling has previously been shown to expand the neutrophil life span and regulate the expression of some antiapoptotic factors. Quantitative RT-PCR demonstrated reduced mRNA abundance for the antiapoptotic factors BCL-2, IAP2, MCL-1, and others in BM cells from IFrag−/− compared with that in BM cells from RAG−/− mice at day 7. mRNA and protein for the proapoptotic cytokine TNF-α was increased, whereas mRNA for the growth factors G-CSF and GM-CSF was reduced. In vivo anti–TNF-α treatment improved precursor cell survival and activity in culture. Thus, we propose that lack of type I IFN signaling results in decreased resistance to inflammation-induced proapoptotic stressors and impaired replenishment by precursors after systemic responses to Pneumocystis lung infection. Our finding may have implications in understanding mechanisms underlying regenerative BM depression/failure during complex immune deficiencies such as AIDS.
Journal of Immunology | 2007
Nicole Meissner; Melanie R. Rutkowski; Ann Harmsen; Soo Han; Allen G. Harmsen
Loss of CD4 T cells is the hallmark of HIV infection. However, type I IFN-producing plasmacytoid dendritic cells may also be lost. This results in susceptibility to an opportunistic infection such as Pneumocystis pneumonia. In addition, regenerative bone marrow failure resulting in pancytopenia is another common problem in advanced stage AIDS. This may be linked to both the failing immune system and recurrent opportunistic infections. We generated lymphocyte-deficient type I IFN receptor-deficient mice (IFrag−/−) to study the effects on Pneumocystis infection of the lung. When IFrag−/− animals were infected with Pneumocystis they died between days 16 and 21 postinfection with minimal pneumonia but severe anemia due to complete bone marrow failure. This included the loss of uncommitted hemopoietic precursor cells. Bone marrow failure was prevented by the reconstitution of IFrag−/− mice with wild-type lymphocytes, especially B cells. T and B cells lacking type I IFN receptor signaling could only partially prevent bone marrow failure in response to Pneumocystis infection. However, the presence of T and B cells lacking type I IFN signaling resulted in compensatory extramedullary hemopoiesis in the liver and spleen. Lymphocyte support of the regenerative capacity of the bone marrow was provided by both type I IFN-dependent and -independent mechanisms that acted synergistically. Our findings point to the requirement of both type I IFNs and lymphocytes in the regenerative capabilities of the hemopoietic system under the pressure of Pneumocystis infection, but not during steady-state hemopoiesis. This may have implications in the management of pancytopenia in AIDS.
American Journal of Respiratory Cell and Molecular Biology | 2012
Steve D. Swain; Nicole Meissner; Dan W. Siemsen; Kate McInnerney; Allen G. Harmsen
It is widely held that exposure to pathogens such as fungi can be an agent of comorbidity, such as exacerbation of asthma or chronic obstructive pulmonary disease. Although many studies have examined allergic responses to fungi and their effects on pulmonary function, the possible pathologic implications of the early innate responses to fungal pathogens have not been explored. We examined early responses to the atypical fungus Pneumocystis in two common strains of mice in terms of overall immunological response and related pathology, such as cell damage and airway hyperresponsiveness (AHR). We found a strong strain-specific response in BALB/c mice that included recruitment of neutrophils, NK, NKT, and CD4 T cells. This response was accompanied by elevated indicators of lung damage (bronchoalveolar lavage fluid albumin and LDH) and profound AHR. This early response was absent in C57BL/6 mice, although both strains exhibited a later response associated with the clearance of Pneumocystis. We found that this AHR could not be attributed exclusively to the presence of recruited neutrophils, NKT, NK, or CD4 cells or to the actions of IFN-γ or IL-4. However, in the absence of STAT6 signaling, AHR and inflammatory cell recruitment were virtually absent. Gene expression analysis indicated that this early response included activation of several transcription factors that could be involved in pulmonary remodeling. These results show that exposure to a fungus such as Pneumocystis can elicit pulmonary responses that may contribute to morbidity, even without prior sensitization, in the context of certain genetic backgrounds.
American Journal of Pathology | 2012
Michelle Wilkison; Katherine A. Gauss; Yanchao Ran; Steve Searles; David Taylor; Nicole Meissner
HIV infection causes loss of CD4(+) T cells and type 1 interferon (IFN)-producing and IFN-responsive dendritic cells, resulting in immunodeficiencies and susceptibility to opportunistic infections, such as Pneumocystis. Osteoporosis and bone marrow failure are additional unexplained complications in HIV-positive patients and patients with AIDS, respectively. We recently demonstrated that mice that lack lymphocytes and IFN a/b receptor (IFrag(-/-)) develop bone marrow failure after Pneumocystis lung infection, whereas lymphocyte-deficient, IFN α/β receptor-competent mice (RAG(-/-)) had normal hematopoiesis. Interestingly, infected IFrag(-/-) mice also exhibited bone fragility, suggesting loss of bone mass. We quantified bone changes and evaluated the potential connection between progressing bone fragility and bone marrow failure after Pneumocystis lung infection in IFrag(-/-) mice. We found that Pneumocystis infection accelerated osteoclastogenesis as bone marrow failure progressed. This finding was consistent with induction of osteoclastogenic factors, including receptor-activated nuclear factor-κB ligand and the proapoptotic factor tumor necrosis factor-related apoptosis-inducing ligand, in conjunction with their shared decoy receptor osteoprotegerin, in the bone marrow of infected IFrag(-/-) mice. Deregulation of this axis has also been observed in HIV-positive individuals. Biphosphonate treatment of IFrag(-/-) mice prevented bone loss and protected loss of hematopoietic precursor cells that maintained activity in vitro but did not prevent loss of mature neutrophils. Together, these data show that bone loss and bone marrow failure are partially linked, which suggests that the deregulation of the receptor-activated nuclear factor-κB ligand/osteoprotegerin/tumor necrosis factor-related apoptosis-inducing ligand axis may connect the two phenotypes in our model.