Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole Pavio is active.

Publication


Featured researches published by Nicole Pavio.


Veterinary Research | 2010

Zoonotic hepatitis E: animal reservoirs and emerging risks

Nicole Pavio; Xiang-Jin Meng; Christophe Renou

Hepatitis E virus (HEV) is responsible for enterically-transmitted acute hepatitis in humans with two distinct epidemiological patterns. In endemic regions, large waterborne epidemics with thousands of people affected have been observed, and, in contrast, in non-endemic regions, sporadic cases have been described. Although contaminated water has been well documented as the source of infection in endemic regions, the modes of transmission in non-endemic regions are much less known. HEV is a single-strand, positive-sense RNA virus which is classified in the Hepeviridae family with at least four known main genotypes (1–4) of mammalian HEV and one avian HEV. HEV is unique among the known hepatitis viruses, in which it has an animal reservoir. In contrast to humans, swine and other mammalian animal species infected by HEV generally remain asymptomatic, whereas chickens infected by avian HEV may develop a disease known as Hepatitis-Splenomegaly syndrome. HEV genotypes 1 and 2 are found exclusively in humans while genotypes 3 and 4 are found both in humans and other mammals. Several lines of evidence indicate that, in some cases involving HEV genotypes 3 and 4, animal to human transmissions occur. Furthermore, individuals with direct contact with animals are at higher risk of HEV infection. Cross-species infections with HEV genotypes 3 and 4 have been demonstrated experimentally. However, not all sources of human infections have been identified thus far and in many cases, the origin of HEV infection in humans remains unknown.


Journal of Virology | 2003

Protein Synthesis and Endoplasmic Reticulum Stress Can Be Modulated by the Hepatitis C Virus Envelope Protein E2 through the Eukaryotic Initiation Factor 2α Kinase PERK

Nicole Pavio; Patrick R. Romano; Thomas M. Graczyk; Stephen M. Feinstone; Deborah R. Taylor

ABSTRACT The hepatitis C virus envelope protein, E2, is an endoplasmic reticulum (ER)-bound protein that contains a region of sequence homology with the double-stranded RNA-activated protein kinase PKR and its substrate, the eukaryotic translation initiation factor 2 (eIF2). We previously reported that E2 modulates global translation through inhibition of the interferon-induced antiviral protein PKR through its PKR-eIF2α phosphorylation site homology domain (PePHD). Here we show that the PKR-like ER-resident kinase (PERK) binds to and is also inhibited by E2. At low expression levels, E2 induced ER stress, but at high expression levels, and in vitro, E2 inhibited PERK kinase activity. Mammalian cells that stably express E2 were refractory to the translation-inhibitory effects of ER stress inducers, and E2 relieved general translation inhibition induced by PERK. The PePHD of E2 was required for the rescue of translation that was inhibited by activated PERK, similar to our previous findings with PKR. Here we report the inhibition of a second eIF2α kinase by E2, and these results are consistent with a pseudosubstrate mechanism of inhibition of eIF2α kinases. These findings may also explain how the virus promotes persistent infection by overcoming the cellular ER stress response.


Journal of Virology | 2005

Hepatitis C virus E2-CD81 interaction induces hypermutation of the immunoglobulin gene in B cells.

Keigo Machida; Kevin T.-H. Cheng; Nicole Pavio; Vicky M.-H. Sung; Michael M. C. Lai

ABSTRACT Hepatitis C virus (HCV) is one of the leading causes of chronic liver diseases and B-lymphocyte proliferative disorders, including mixed cryoglobulinemia and B-cell lymphoma. It has been suggested that HCV infects human cells through the interaction of its envelope glycoprotein E2 with a tetraspanin molecule CD81, the putative viral receptor. Here, we show that the engagement of B cells by purified E2 induced double-strand DNA breaks specifically in the variable region of immunoglobulin (VH) gene locus, leading to hypermutation in the VH genes of B cells. Other gene loci were not affected. Preincubation with the anti-CD81 monoclonal antibody blocked this effect. E2-CD81 interaction on B cells triggered the enhanced expression of activation-induced cytidine deaminase (AID) and also stimulated the production of tumor necrosis factor alpha. Knockdown of AID by the specific small interfering RNA blocked the E2-induced double-strand DNA breaks and hypermutation of the VH gene. These findings suggest that HCV infection, through E2-CD81 interaction, may modulate hosts innate or adaptive immune response by activation of AID and hypermutation of immunoglobulin gene in B cells, leading to HCV-associated B-cell lymphoproliferative diseases.


Applied and Environmental Microbiology | 2012

Thermal Inactivation of Infectious Hepatitis E Virus in Experimentally Contaminated Food.

Elodie Barnaud; Sophie Rogée; Pascal Garry; Nicolas Rose; Nicole Pavio

ABSTRACT Hepatitis E virus (HEV) infection of zoonotic origin is an emerging concern in industrialized countries. In the past few years, several cases of zoonotic hepatitis E have been identified and the consumption of food products derived from pork liver have been associated with clusters of human cases. More specifically, raw or undercooked pork products have been incriminated. Few data on the effect of heating on HEV inactivation in food products are available. In the present study, the various times and temperatures that are used during industrial processing of pork products were applied to experimentally contaminated food preparations. After treatment, the presence of residual infectious virus particles was investigated using real-time reverse transcription-PCR and an in vivo experimental model in pigs. Results show that heating the food to an internal temperature of 71°C for 20 min is necessary to completely inactivate HEV. These results are very important for determining processing methods to ensure food safety in regard to food-borne hepatitis E.


Journal of Virology | 2002

Detection of a Novel Unglycosylated Form of Hepatitis C Virus E2 Envelope Protein That Is Located in the Cytosol and Interacts with PKR

Nicole Pavio; Deborah R. Taylor; Michael M. C. Lai

ABSTRACT The hepatitis C virus (HCV) envelope protein E2 has been shown to accumulate in the lumen of the endoplasmic reticulum (ER) as a properly folded glycoprotein as well as large aggregates of misfolded proteins. In the present study, we have identified an additional unglycosylated species, with an apparent molecular mass of 38 kDa (E2-p38). In contrast to the glycosylated E2, E2-p38 is significantly less stable and is degraded through the proteasome pathway. Correspondingly, E2-p38 is found to be ubiquitinated. E2-p38 is localized mostly in the cytosol, in contrast to the glycosylated form, which is exclusively membrane associated. Alpha interferon (IFN-α) treatment or overexpression of the double-stranded RNA-activated protein kinase (PKR) significantly increased the stability of E2-p38, consistent with a previous report (D. R. Taylor, S. T. Shi, P. R. Romano, G. N. Barber, and M. M. Lai, Science 285:107–110, 1999) that E2 interacts with PKR and inhibits its kinase activity. Direct interaction between PKR and E2-p38, but not the glycosylated form of E2, was also observed. These results show that E2-p38 is the form of E2 that interacts with PKR in the cytosol and may contribute to the resistance of HCV to IFN-α. Thus, an ER protein can exist in the cytosol as an unglycosylated species and impair cellular functions.


Current Opinion in Virology | 2015

Zoonotic origin of hepatitis E.

Nicole Pavio; Xiang-Jin Meng; Virginie Doceul

The concept of zoonotic viral hepatitis E has emerged a few years ago following the discovery of animal strains of hepatitis E virus (HEV), closely related to human HEV, in countries where sporadic cases of hepatitis E were autochthonous. Recent advances in the identification of animal reservoirs of HEV have confirmed that strains circulating in domestic and wild pigs are genetically related to strains identified in indigenous human cases. The demonstration of HEV contamination in the food chain or pork products has indicated that HEV is frequently a foodborne zoonotic pathogen. Direct contacts with infected animals, consumption of contaminated animal meat or meat products are all potential means of zoonotic HEV transmission. The recent identification of numerous other genetically diverse HEV strains from various animal species poses additional potential concerns for HEV zoonotic infection.


Emerging Infectious Diseases | 2011

Close Similarity between Sequences of Hepatitis E Virus Recovered from Humans and Swine, France, 2008−2009

Jérôme Bouquet; Sophie Tesse; Aurélie Lunazzi; Marc Eloit; Nicolas Rose; Elisabeth Nicand; Nicole Pavio

Frequent zoonotic transmission of hepatitis E virus (HEV) has been suspected, but data supporting the animal origin of autochthonous cases are still sparse. We assessed the genetic identity of HEV strains found in humans and swine during an 18-month period in France. HEV sequences identified in patients with autochthonous hepatitis E infection (n = 106) were compared with sequences amplified from swine livers collected in slaughterhouses (n = 43). Phylogenetic analysis showed the same proportions of subtypes 3f (73.8%), 3c (13.4%), and 3e (4.7%) in human and swine populations. Furthermore, similarity of >99% was found between HEV sequences of human and swine origins. These results indicate that consumption of some pork products, such as raw liver, is a major source of exposure for autochthonous HEV infection.


Comparative Immunology Microbiology and Infectious Diseases | 2011

High prevalence of Hepatitis E virus in French domestic pigs

Nicolas Rose; Aurélie Lunazzi; Virginie Dorenlor; Thiziri Merbah; Florent Eono; Marc Eloit; François Madec; Nicole Pavio

The importance of the domestic pig reservoir for Hepatitis E virus (HEV) was assessed by estimating the seroprevalence and prevalence of HEV contaminated livers in French slaughter-aged pigs. 6565 sera and 3715 livers were randomly sampled from 186 pig farms throughout the country. Taking the sampling design into account, the farm-level seroprevalence was 65% (95% CI 57-74) and 31% (95% CI 24-38) of the slaughter-aged pigs had antibodies against HEV. The individual prevalence of HEV RNA positive livers was 4% (95% CI 2-6) and 24% (95% CI 17-31) of the farms had at least 1 positive liver. Most isolates were of genotype 3f (76.7%) with smaller amounts of 3c (18.6%) and 3e (4.6%). The high prevalence of HEV in pigs and the similarities between HEV subtypes from pigs and humans corroborates the possible zoonotic origin of some HEV autochthonous infections.


Emerging Infectious Diseases | 2007

Possible Zoonotic Transmission of Hepatitis E from Pet Pig to Its Owner

Christophe Renou; Jean-François Cadranel; Marc Bourlière; Philippe Halfon; Denis Ouzan; Rifflet H; Philippe Carenco; Abdelouahid Harafa; Jean Jacques Bertrand; Annie Boutrouille; Pierre Muller; Jean-Pierre Igual; Anne Decoppet; Marc Eloit; Nicole Pavio

Hepatitis E is transmitted mainly by water or food, but in industrialized countries, all routes of transmission have not been identified. We describe possible zoonotic transmission of hepatitis E virus that involved direct contact between a pet pig and its owner.


Emerging Infectious Diseases | 2012

Hepatitis E Virus in Pork Liver Sausage, France

Alessandra Berto; Sylvia Grierson; Renate Hakze-van der Honing; Francesca Martelli; Reimar Johne; Jochen Reetz; Rainer G. Ulrich; Nicole Pavio; Wim H. M. van der Poel; Malcolm Banks

We investigated viability of hepatitis E virus (HEV) identified in contaminated pork liver sausages obtained from France. HEV replication was demonstrated in 1 of 4 samples by using a 3-dimensional cell culture system. The risk for human infection with HEV by consumption of these sausages should be considered to be high.

Collaboration


Dive into the Nicole Pavio's collaboration.

Top Co-Authors

Avatar

Christophe Renou

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jérôme Bouquet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marc Eloit

École nationale vétérinaire d'Alfort

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annie Boutrouille

École nationale vétérinaire d'Alfort

View shared research outputs
Researchain Logo
Decentralizing Knowledge