Nicole R. Murray
Mayo Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicole R. Murray.
Journal of Cell Biology | 2004
Nicole R. Murray; Lee Jamieson; Wangsheng Yu; Jie Zhang; Yesim Gökmen-Polar; Deborah Sier; Panos Z. Anastasiadis; Zoran Gatalica; E. Aubrey Thompson; Alan P. Fields
Protein kinase C ι (PKCι) has been implicated in Ras signaling, however, a role for PKCι in oncogenic Ras-mediated transformation has not been established. Here, we show that PKCι is a critical downstream effector of oncogenic Ras in the colonic epithelium. Transgenic mice expressing constitutively active PKCι in the colon are highly susceptible to carcinogen-induced colon carcinogenesis, whereas mice expressing kinase-deficient PKCι (kdPKCι) are resistant to both carcinogen- and oncogenic Ras-mediated carcinogenesis. Expression of kdPKCι in Ras-transformed rat intestinal epithelial cells blocks oncogenic Ras-mediated activation of Rac1, cellular invasion, and anchorage-independent growth. Constitutively active Rac1 (RacV12) restores invasiveness and anchorage-independent growth in Ras-transformed rat intestinal epithelial cells expressing kdPKCι. Our data demonstrate that PKCι is required for oncogenic Ras- and carcinogen-mediated colon carcinogenesis in vivo and define a procarcinogenic signaling axis consisting of Ras, PKCι, and Rac1.
Cancer Cell | 2014
Verline Justilien; Michael P. Walsh; Syed A. Ali; E. Aubrey Thompson; Nicole R. Murray; Alan P. Fields
We report that two oncogenes coamplified on chromosome 3q26, PRKCI and SOX2, cooperate to drive a stem-like phenotype in lung squamous cell carcinoma (LSCC). Protein kinase Cι (PKCι) phosphorylates SOX2, a master transcriptional regulator of stemness, and recruits it to the promoter of Hedgehog (Hh) acyltransferase (HHAT) that catalyzes the rate-limiting step in Hh ligand production. PKCι-mediated SOX2 phosphorylation is required for HHAT promoter occupancy, HHAT expression, and maintenance of a stem-like phenotype. Primary LSCC tumors coordinately overexpress PKCι, SOX2, and HHAT and require PKCι-SOX2-HHAT signaling to maintain a stem-like phenotype. Thus, PKCι and SOX2 are genetically, biochemically, and functionally linked in LSCC, and together they drive tumorigenesis by establishing a cell-autonomous Hh signaling axis.
Journal of Cellular Physiology | 2011
Nicole R. Murray; Krishna R. Kalari; Alan P. Fields
Accumulating evidence demonstrates that PKCι is an oncogene and prognostic marker that is frequently targeted for genetic alteration in many major forms of human cancer. Functional data demonstrate that PKCι is required for the transformed phenotype of lung, pancreatic, ovarian, prostate, colon, and brain cancer cells. Future studies will be required to determine whether PKCι is also an oncogene in the many other cancer types that also overexpress PKCι. Studies of PKCι using genetically defined models of tumorigenesis have revealed a critical role for PKCι in multiple stages of tumorigenesis, including tumor initiation, progression, and metastasis. Recent studies in a genetic model of lung adenocarcinoma suggest a role for PKCι in transformation of lung cancer stem cells. These studies have important implications for the therapeutic use of aurothiomalate (ATM), a highly selective PKCι signaling inhibitor currently undergoing clinical evaluation. Significant progress has been made in determining the molecular mechanisms by which PKCι drives the transformed phenotype, particularly the central role played by the oncogenic PKCι‐Par6 complex in transformed growth and invasion, and of several PKCι‐dependent survival pathways in chemo‐resistance. Future studies will be required to determine the composition and dynamics of the PKCι‐Par6 complex, and the mechanisms by which oncogenic signaling through this complex is regulated. Likewise, a better understanding of the critical downstream effectors of PKCι in various human tumor types holds promise for identifying novel prognostic and surrogate markers of oncogenic PKCι activity that may be clinically useful in ongoing clinical trials of ATM. J. Cell. Physiol. 226: 879–887, 2011.
PLOS ONE | 2012
Verline Justilien; Roderick P. Regala; I-Chu Tseng; Michael P. Walsh; Jyotica Batra; Evette S. Radisky; Nicole R. Murray; Alan P. Fields
Matrix metalloproteinases (Mmps) stimulate tumor invasion and metastasis by degrading the extracellular matrix. Here we reveal an unexpected role for Mmp10 (stromelysin 2) in the maintenance and tumorigenicity of mouse lung cancer stem-like cells (CSC). Mmp10 is highly expressed in oncosphere cultures enriched in CSCs and RNAi-mediated knockdown of Mmp10 leads to a loss of stem cell marker gene expression and inhibition of oncosphere growth, clonal expansion, and transformed growth in vitro. Interestingly, clonal expansion of Mmp10 deficient oncospheres can be restored by addition of exogenous Mmp10 protein to the culture medium, demonstrating a direct role for Mmp10 in the proliferation of these cells. Oncospheres exhibit enhanced tumor-initiating and metastatic activity when injected orthotopically into syngeneic mice, whereas Mmp10-deficient cultures show a severe defect in tumor initiation. Conversely, oncospheres implanted into syngeneic non-transgenic or Mmp10 −/− mice show no significant difference in tumor initiation, growth or metastasis, demonstrating the importance of Mmp10 produced by cancer cells rather than the tumor microenvironment in lung tumor initiation and maintenance. Analysis of gene expression data from human cancers reveals a strong positive correlation between tumor Mmp10 expression and metastatic behavior in many human tumor types. Thus, Mmp10 is required for maintenance of a highly tumorigenic, cancer-initiating, metastatic stem-like cell population in lung cancer. Our data demonstrate for the first time that Mmp10 is a critical lung cancer stem cell gene and novel therapeutic target for lung cancer stem cells.
World Journal of Gastroenterology | 2014
Kristin S. Inman; Amanda A. Francis; Nicole R. Murray
The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed.
International Journal of Cancer | 2008
Shelly R. Calcagno; Shuhua Li; Migdalisel Colon; Pamela A. Kreinest; E. Aubrey Thompson; Alan P. Fields; Nicole R. Murray
Oncogenic K‐ras mutations are frequently observed in colon cancers and contribute to transformed growth. Oncogenic K‐ras is detected in aberrant crypt foci (ACF), precancerous colonic lesions, demonstrating that acquisition of a K‐ras mutation is an early event in colon carcinogenesis. Here, we investigate the role of oncogenic K‐ras in neoplastic initiation and progression. Transgenic mice in which an oncogenic K‐rasG12D allele is activated in the colonic epithelium by sporadic recombination (K‐rasLA2 mice) develop spontaneous ACF that are morphologically indistinguishable from those induced by the colon carcinogen azoxymethane (AOM). Similar neoplastic changes involving the entire colon are induced in transgenic mice constitutively expressing K‐rasG12D throughout the colon (LSL‐K‐rasG12D/Villin‐Cre mice). However, the biochemistry and fate of K‐ras‐induced lesions differ depending upon their location within the colon in these mice. In the proximal colon, K‐rasG12D induces increased expression of procarcinogenic protein kinase CβII (PKCβII), activation of the MEK/ERK signaling axis and increased epithelial cell proliferation. In contrast, in the distal colon, K‐rasG12D inhibits expression of procarcinogenic PKCβII and induces apoptosis. Treatment of K‐rasLA2 mice with AOM leads to neoplastic progression of small ACF to large, dysplastic microadenomas in the proximal, but not the distal colon. Thus, oncogenic K‐ras functions differently in the proximal and distal colon of mice, inducing ACF capable of neoplastic progression in the proximal colon, and ACF with little or no potential for progression in the distal colon. Our data indicate that acquisition of a K‐ras mutation is an initiating neoplastic event in proximal colon cancer development in mice.
Advances in Enzyme Regulation | 2008
Alan P. Fields; Nicole R. Murray
Summary PKC isozymes play specific, non-redundant functional roles in numerous cellular processes,including proliferation, differentiation, cellular invasion and apoptosis. We have determinedthat PKCβII and PKCι are both critical pro-carcinogenic genes involved in multiple humancancers. PKCι is a bonafide human oncogene, the first PKC isozyme that can be so classified.Both PKCβII and PKCι are legitimate therapeutic targets to which novel targeted therapy hasbeen successfully developed and is being evaluated clinically. Acknowledgements We would like to thank all the members of the Fields laboratory for their contributions to the work described in thisreview. We would also like to acknowledge the work of the many investigators whose combined work has madecritical contributions to our understanding of PKC functions in cancer. Space limitations necessitated a relativelynarrow focus in this review. We apologize to colleagues whose contributions were not cited due to these constraints.The work described here was supported by grants from the National Cancer Institute to APF (R01 CA081436 andR01CA056869), and to NRM (R01CA094122). Additional funding was provided by the American Lung Association/LUNGevity Lung Cancer Discovery Award (LCD-22766-N), the James and Esther King Biomedical ResearchProgram, and the V Foundation for Cancer Research to APF.
Nature Communications | 2015
Geou Yarh Liou; Heike Döppler; Ursula Braun; Richard Panayiotou; Michele Scotti Buzhardt; Derek C. Radisky; Howard C. Crawford; Alan P. Fields; Nicole R. Murray; Q. Jane Wang; Michael Leitges; Peter Storz
The transdifferentiation of pancreatic acinar cells to a ductal phenotype (acinar-to-ductal metaplasia, ADM) occurs after injury or inflammation of the pancreas and is a reversible process. However, in the presence of activating Kras mutations or persistent epidermal growth factor receptor (EGF-R) signaling, cells that underwent ADM can progress to pancreatic intraepithelial lesions (PanINs) and eventually pancreatic cancer. In transgenic animal models, ADM and PanINs are initiated by high-affinity ligands for EGF-R or activating Kras mutations, but the underlying signaling mechanisms are not well understood. Here, using a conditional knockout approach, we show that Protein Kinase D1 (PKD1) is sufficient to drive the reprogramming process to a ductal phenotype and progression to PanINs. Moreover, using 3D explant culture of primary pancreatic acinar cells, we show that PKD1 acts downstream of TGFα and Kras to mediate formation of ductal structures through activation of the Notch pathway.
PLOS ONE | 2011
Roderick P. Regala; Verline Justilien; Michael P. Walsh; Capella Weems; Andras Khoor; Nicole R. Murray; Alan P. Fields
Matrix metalloproteinase 10 (MMP-10; stromelysin 2) is a member of a large family of structurally related matrix metalloproteinases, many of which have been implicated in tumor progression, invasion and metastasis. We recently identified Mmp10 as a gene that is highly induced in tumor-initiating lung bronchioalveolar stem cells (BASCs) upon activation of oncogenic Kras in a mouse model of lung adenocarcinoma. However, the potential role of Mmp10 in lung tumorigenesis has not been addressed. Here, we demonstrate that Mmp10 is overexpressed in lung tumors induced by either the smoke carcinogen urethane or oncogenic Kras. In addition, we report a significant reduction in lung tumor number and size after urethane exposure or genetic activation of oncogenic Kras in Mmp10 null (Mmp10−/−) mice. This inhibitory effect is reflected in a defect in the ability of Mmp10-deficient BASCs to expand and undergo transformation in response to urethane or oncogenic Kras in vivo and in vitro, demonstrating a role for Mmp10 in the tumor-initiating activity of Kras-transformed lung stem cells. To determine the potential relevance of MMP10 in human cancer we analyzed Mmp10 expression in publicly-available gene expression profiles of human cancers. Our analysis reveals that MMP10 is highly overexpressed in human lung tumors. Gene set enhancement analysis (GSEA) demonstrates that elevated MMP10 expression correlates with both cancer stem cell and tumor metastasis genomic signatures in human lung cancer. Finally, Mmp10 is elevated in many human tumor types suggesting a widespread role for Mmp10 in human malignancy. We conclude that Mmp10 plays an important role in lung tumor initiation via maintenance of a highly tumorigenic, cancer-initiating, stem-like cell population, and that Mmp10 expression is associated with stem-like, highly metastatic genotypes in human lung cancers. These results indicate that Mmp10 may represent a novel therapeutic approach to target lung cancer stem cells.
Cancer Cell | 2016
Syed A. Ali; Verline Justilien; Lee Jamieson; Nicole R. Murray; Alan P. Fields
We report that the protein kinase Cι (PKCι) oncogene controls expression of NOTCH3, a key driver of stemness, in KRAS-mediated lung adenocarcinoma (LADC). PKCι activates NOTCH3 expression by phosphorylating the ELF3 transcription factor and driving ELF3 occupancy on the NOTCH3 promoter. PKCι-ELF3-NOTCH3 signaling controls the tumor-initiating cell phenotype by regulating asymmetric cell division, a process necessary for tumor initiation and maintenance. Primary LADC tumors exhibit PKCι-ELF3-NOTCH3 signaling, and combined pharmacologic blockade of PKCι and NOTCH synergistically inhibits tumorigenic behavior in vitro and LADC growth in vivo demonstrating the therapeutic potential of PKCι-ELF3-NOTCH3 signal inhibition to more effectively treat KRAS LADC.