Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole Revencu is active.

Publication


Featured researches published by Nicole Revencu.


Human Mutation | 2008

Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast‐flow vascular anomalies are caused by RASA1 mutations

Nicole Revencu; Laurence M. Boon; John B. Mulliken; Odile Enjolras; Maria R. Cordisco; Patricia E. Burrows; Philippe Clapuyt; Frank Hammer; Josée Dubois; Eulalia Baselga; Francesco Brancati; Robin Carder; José M Ceballos Quintal; Bruno Dallapiccola; Gayle Fischer; Ilona J. Frieden; Maria C. Garzon; John I. Harper; Jennifer Johnson-Patel; Christine Labrèze; Loreto Martorell; Harriet J. Paltiel; Annette Pohl; Julie S. Prendiville; Isabelle Quere; Dawn H. Siegel; Enza Maria Valente; Annet Van Hagen; Liselot Van Hest; Keith K. Vaux

Capillary malformation‐arteriovenous malformation (CM‐AVM) is a newly recognized autosomal dominant disorder, caused by mutations in the RASA1 gene in six families. Here we report 42 novel RASA1 mutations and the associated phenotype in 44 families. The penetrance and de novo occurrence were high. All affected individuals presented multifocal capillary malformations (CMs), which represent the hallmark of the disorder. Importantly, one‐third had fast‐flow vascular lesions. Among them, we observed severe intracranial AVMs, including vein of Galen aneurysmal malformation, which were symptomatic at birth or during infancy, extracranial AVM of the face and extremities, and Parkes Weber syndrome (PKWS), previously considered sporadic and nongenetic. These fast‐flow lesions can be differed from the other two genetic AVMs seen in hereditary hemorrhagic telangiectasia (HHT) and in phosphatase and tensin homolog (PTEN) hamartomatous tumor syndrome. Finally, some CM‐AVM patients had neural tumors reminiscent of neurofibromatosis type 1 or 2. This is the first extensive study on the phenotypes associated with RASA1 mutations, and unravels their wide heterogeneity. Hum Mutat 29(7), 959–965, 2008.


Journal of Medical Genetics | 2006

Cerebral cavernous malformation: new molecular and clinical insights

Nicole Revencu; Miikka Vikkula

Cerebral cavernous malformation (CCM) is a vascular malformation causing neurological problems, such as headaches, seizures, focal neurological deficits, and cerebral haemorrhages. CCMs can occur sporadically or as an autosomal dominant condition with variable expression and incomplete penetrance. Familial forms have been linked to three chromosomal loci, and loss of function mutations have been identified in the KRIT1/CCM1, MGC4607/CCM2, and PDCD10/CCM3 genes. Recently, many new pieces of data have been added to the CCM puzzle. It has been shown that the three CCM genes are expressed in neurones rather than in blood vessels. The interaction between CCM1 and CCM2, which was expected on the basis of their structure, has also been proven, suggesting a common functional pathway. Finally, in a large series of KRIT1 mutation carriers, clinical and neuroradiological features have been characterised. These data should lead to more appropriate follow up, treatment, and genetic counselling. The recent developments will also help to elucidate the precise pathogenic mechanisms leading to CCM, contributing to a better understanding of normal and pathological angiogenesis and to the development of targeted treatment.


Human Mutation | 2013

RASA1 mutations and associated phenotypes in 68 families with capillary malformation-arteriovenous malformation

Nicole Revencu; Laurence M. Boon; Antonella Mendola; Maria R. Cordisco; Josée Dubois; Philippe Clapuyt; Frank Hammer; David J. Amor; Alan D. Irvine; Eulalia Baselga; Anne Dompmartin; Samira Syed; Ana Martin-Santiago; Lesley C. Adès; Felicity Collins; Janine Smith; Sarah A. Sandaradura; Victoria R. Barrio; Patricia E. Burrows; Francine Blei; Mariarosaria Cozzolino; Nicola Brunetti-Pierri; Asunción Vicente; Marc Abramowicz; Julie Désir; Catheline Vilain; Wendy K. Chung; Ashley Wilson; Carol Gardiner; Yim Dwight

Capillary malformation–arteriovenous malformation (CM–AVM) is an autosomal‐dominant disorder, caused by heterozygous RASA1 mutations, and manifesting multifocal CMs and high risk for fast‐flow lesions. A limited number of patients have been reported, raising the question of the phenotypic borders. We identified new patients with a clinical diagnosis of CM–AVM, and patients with overlapping phenotypes. RASA1 was screened in 261 index patients with: CM–AVM (n = 100), common CM(s) (port‐wine stain; n = 100), Sturge–Weber syndrome (n = 37), or isolated AVM(s) (n = 24). Fifty‐eight distinct RASA1 mutations (43 novel) were identified in 68 index patients with CM–AVM and none in patients with other phenotypes. A novel clinical feature was identified: cutaneous zones of numerous small white pale halos with a central red spot. An additional question addressed in this study was the “second‐hit” hypothesis as a pathophysiological mechanism for CM–AVM. One tissue from a patient with a germline RASA1 mutation was available. The analysis of the tissue showed loss of the wild‐type RASA1 allele. In conclusion, mutations in RASA1 underscore the specific CM–AVM phenotype and the clinical diagnosis is based on identifying the characteristic CMs. The high incidence of fast‐flow lesions warrants careful clinical and radiologic examination, and regular follow‐up.


European Journal of Human Genetics | 2012

How genetically heterogeneous is Kabuki syndrome?: MLL2 testing in 116 patients, review and analyses of mutation and phenotypic spectrum

Siddharth Banka; Ratna Veeramachaneni; William Reardon; Emma Howard; Sancha Bunstone; Nicola Ragge; Michael J. Parker; Yanick J. Crow; Bronwyn Kerr; Helen Kingston; Kay Metcalfe; Kate Chandler; Alex Magee; Fiona Stewart; Vivienne McConnell; Deirdre E. Donnelly; Siren Berland; Gunnar Houge; Jenny Morton; Christine Oley; Nicole Revencu; Soo Mi Park; Sally Davies; Andrew E. Fry; Sally Ann Lynch; Harinder Gill; Susann Schweiger; Wayne W K Lam; John Tolmie; Shehla Mohammed

MLL2 mutations are detected in 55 to 80% of patients with Kabuki syndrome (KS). In 20 to 45% patients with KS, the genetic basis remains unknown, suggesting possible genetic heterogeneity. Here, we present the largest yet reported cohort of 116 patients with KS. We identified MLL2 variants in 74 patients, of which 47 are novel and a majority are truncating. We show that pathogenic missense mutations were commonly located in exon 48. We undertook a systematic facial KS morphology study of patients with KS at our regional dysmorphology meeting. Our data suggest that nearly all patients with typical KS facial features have pathogenic MLL2 mutations, although KS can be phenotypically variable. Furthermore, we show that MLL2 mutation-positive KS patients are more likely to have feeding problems, kidney anomalies, early breast bud development, joint dislocations and palatal malformations in comparison with MLL2 mutation-negative patients. Our work expands the mutation spectrum of MLL2 that may help in better understanding of this molecule, which is important in gene expression, epigenetic control of active chromatin states, embryonic development and cancer. Our analyses of the phenotype indicates that MLL2 mutation-positive and -negative patients differ systematically, and genetic heterogeneity of KS is not as extensive as previously suggested. Moreover, phenotypic variability of KS suggests that MLL2 testing should be considered even in atypical patients.


European Journal of Human Genetics | 2005

Interferon regulatory factor-6: a gene predisposing to isolated cleft lip with or without cleft palate in the Belgian population.

Michella Ghassibé; Bénédicte Bayet; Nicole Revencu; Christine Verellen-Dumoulin; Yves Gillerot; Romain Vanwijck; Miikka Vikkula

Cleft lip with or without cleft palate is the most frequent craniofacial malformation in humans (∼1/700). Its etiology is multifactorial; some are a result of a genetic mutation, while others may be due to environmental factors, with genetic predisposition playing an important role. The prevalence varies widely between populations and the mode of inheritance remains controversial. The interferon regulatory factor-6 (IRF6) gene has been shown to harbor mutations in patients with van der Woude syndrome, a dominant form of clefts associated with small pits of the lower lip. Moreover IRF6 has been associated with nonsyndromic cleft of the palate (CL/P) in two separate studies. We investigated the role of IRF6 in a set of 195 trios from Belgium. Cleft occurred as an isolated feature. We studied association of the IRF6 locus using two variants: one in the IRF6 gene and the other 100 kpb 3′ of the gene. Our independent study group confirms that the IRF6 locus is associated with nonsyndromic cleft lip with or without palate. This result, with previous studies performed in the United States and Italy, shows for the first time the implication of IRF6 in isolated CL/P in northern Europe. It is likely that association to this locus can be identified in various populations and that the IRF6 locus thus represents an important genetic modifier for this multifactorial malformation.


American Journal of Neuroradiology | 2010

A Novel Association between RASA1 Mutations and Spinal Arteriovenous Anomalies.

R. Thiex; John B. Mulliken; Nicole Revencu; Laurence M. Boon; Patricia E. Burrows; Maria R. Cordisco; Y. Dwight; Edward R. Smith; Miikka Vikkula; Darren B. Orbach

BACKGROUND AND PURPOSE: CM-AVM is a recently recognized autosomal dominant disorder associated with mutations in RASA1. Arteriovenous lesions have been reported in the brain, limbs, and the face in 18.5% of patients. We report a novel association between RASA1 mutations and spinal arteriovenous anomalies. MATERIALS AND METHODS: In a collaborative study, 5 index patients (2 females, 3 males) with spinal AVMs or AVFs and cutaneous multifocal capillary lesions were investigated for the RASA1 gene mutation. RESULTS: All 5 patients were found to have RASA1 mutation (2 de novo, 3 familial), and all had multifocal capillary malformations at birth. Neurologic deficits developed at ages ranging from infancy to early adulthood. All spinal anomalies (2 AVMs at the conus, 1 AVM at the lumbosacral junction, and 1 cervical and 1 cervicothoracic AVF) were complex, extensive, and fast-flow lesions. All patients required treatment based on the clinical and/or radiologic appearance of the lesions. CONCLUSIONS: To our knowledge, an association of RASA1 mutation and spinal AVM/AVF has not been described. MR imaging screening of patients with characteristic CMs and neurologic symptoms presenting at a young age may be useful in detecting the presence of fast-flow intracranial or intraspinal arteriovenous anomalies before potentially significant neurologic insult has occurred.


Human Molecular Genetics | 2014

Loss-of-function HDAC8 mutations cause a phenotypic spectrum of Cornelia de Lange syndrome-like features, ocular hypertelorism, large fontanelle and X-linked inheritance

Frank J. Kaiser; Morad Ansari; Diana Braunholz; María Concepción Gil-Rodríguez; Christophe Decroos; Jonathan Wilde; Christopher T. Fincher; Maninder Kaur; Masashige Bando; David J. Amor; Paldeep Singh Atwal; Melanie Bahlo; Christine M. Bowman; Jacquelyn J. Bradley; Han G. Brunner; Dinah Clark; Miguel del Campo; Nataliya Di Donato; Peter Diakumis; Holly Dubbs; David A. Dyment; Juliane Eckhold; Sarah Ernst; Jose Carlos Ferreira; Lauren J. Francey; Ulrike Gehlken; Encarna Guillén-Navarro; Yolanda Gyftodimou; Bryan D. Hall; Raoul C. M. Hennekam

Cornelia de Lange syndrome (CdLS) is a multisystem genetic disorder with distinct facies, growth failure, intellectual disability, distal limb anomalies, gastrointestinal and neurological disease. Mutations in NIPBL, encoding a cohesin regulatory protein, account for >80% of cases with typical facies. Mutations in the core cohesin complex proteins, encoded by the SMC1A, SMC3 and RAD21 genes, together account for ∼5% of subjects, often with atypical CdLS features. Recently, we identified mutations in the X-linked gene HDAC8 as the cause of a small number of CdLS cases. Here, we report a cohort of 38 individuals with an emerging spectrum of features caused by HDAC8 mutations. For several individuals, the diagnosis of CdLS was not considered prior to genomic testing. Most mutations identified are missense and de novo. Many cases are heterozygous females, each with marked skewing of X-inactivation in peripheral blood DNA. We also identified eight hemizygous males who are more severely affected. The craniofacial appearance caused by HDAC8 mutations overlaps that of typical CdLS but often displays delayed anterior fontanelle closure, ocular hypertelorism, hooding of the eyelids, a broader nose and dental anomalies, which may be useful discriminating features. HDAC8 encodes the lysine deacetylase for the cohesin subunit SMC3 and analysis of the functional consequences of the missense mutations indicates that all cause a loss of enzymatic function. These data demonstrate that loss-of-function mutations in HDAC8 cause a range of overlapping human developmental phenotypes, including a phenotypically distinct subgroup of CdLS.


Clinical Genetics | 2013

MLL2 mutation detection in 86 patients with Kabuki syndrome: a genotype-phenotype study

Periklis Makrythanasis; Bw van Bon; Marloes Steehouwer; B Rodríguez-Santiago; Michael A. Simpson; P Dias; Bm Anderlid; P Arts; M Bhat; Bartolomeo Augello; Elisa Biamino; Emhf Bongers; M. del Campo; I Cordeiro; Am Cueto-González; I Cuscó; C Deshpande; E Frysira; Louise Izatt; R Flores; E Galán; B Gener; Christian Gilissen; Sm Granneman; Juliane Hoyer; Hg Yntema; Cm Kets; David A. Koolen; Cl Marcelis; A Medeira

Recently, pathogenic variants in the MLL2 gene were identified as the most common cause of Kabuki (Niikawa–Kuroki) syndrome (MIM#147920). To further elucidate the genotype–phenotype correlation, we studied a large cohort of 86 clinically defined patients with Kabuki syndrome (KS) for mutations in MLL2. All patients were assessed using a standardized phenotype list and all were scored using a newly developed clinical score list for KS (MLL2‐Kabuki score 0–10). Sequencing of the full coding region and intron–exon boundaries of MLL2 identified a total of 45 likely pathogenic mutations (52%): 31 nonsense, 10 missense and four splice‐site mutations, 34 of which were novel. In five additional patients, novel, i.e. non‐dbSNP132 variants of clinically unknown relevance, were identified. Patients with likely pathogenic nonsense or missense MLL2 mutations were usually more severely affected (median ‘MLL2‐Kabuki score’ of 6) as compared to the patients without MLL2 mutations (median ‘MLL2‐Kabuki score’ of 5), a significant difference (p < 0.0014). Several typical facial features such as large dysplastic ears, arched eyebrows with sparse lateral third, blue sclerae, a flat nasal tip with a broad nasal root, and a thin upper and a full lower lip were observed more often in mutation positive patients.


European Journal of Medical Genetics | 2014

Implementation of genomic arrays in prenatal diagnosis: The Belgian approach to meet the challenges

Olivier Vanakker; Catheline Vilain; Katrien Janssens; Nathalie Van der Aa; Guillaume Smits; Claude Bandelier; Bettina Blaumeiser; Saskia Bulk; Jean-Hubert Caberg; Anne De Leener; Marjan De Rademaeker; Thomy de Ravel; Julie Désir; A Destree; Annelies Dheedene; Stéphane Gaillez; Bernard Grisart; Ann-Cécile Hellin; Sandra Janssens; Kathelijn Keymolen; Björn Menten; Bruno Pichon; Marie Ravoet; Nicole Revencu; Sonia Rombout; Catherine Staessens; Ann Van Den Bogaert; Kris Van Den Bogaert; Joris Vermeesch; Frank Kooy

After their successful introduction in postnatal testing, genome-wide arrays are now rapidly replacing conventional karyotyping in prenatal diagnostics. While previous studies have demonstrated the advantages of this method, we are confronted with difficulties regarding the technology and the ethical dilemmas inherent to genomic arrays. These include indication for testing, array design, interpretation of variants and how to deal with variants of unknown significance and incidental findings. The experiences with these issues reported in the literature are most often from single centres. Here, we report on a national consensus approach how microarray is implemented in all genetic centres in Belgium. These recommendations are subjected to constant re-evaluation based on our growing experience and can serve as a useful tool for those involved in prenatal diagnosis.


Journal of Medical Genetics | 2004

Six families with van der Woude and/or popliteal pterygium syndrome: all with a mutation in the IRF6 gene

Michella Ghassibé; Nicole Revencu; Bénédicte Bayet; Yves Gillerot; R Vanwijck; Christine Verellen-Dumoulin; Miikka Vikkula

. an der Woude syndrome (VWS, OMIM #119300) is a dominantly inherited developmental disorder characterised by pits and/or sinuses of the lower lip, cleft lip with or without cleft palate (CL/P), isolated cleft palate (CP), bifid uvula (BU), and hypodontia (H). 1–3 Cleft lip deformity is established during the first 6 weeks of life due to failure of fusion of maxillary and medial nasal processes or to incomplete mesodermal ingrowth into the processes. Palatal clefts result from failure of fusion of the palatal shelves that normally change from a vertical to horizontal position and fuse during the sixth to ninth weeks of gestation. The severity of VWS varies widely, even within families. About 25% of individuals with the syndrome have minimal findings, such as absent teeth or trivial indentations in the lower lips. Clefting of the lip or palate is present in ,50% of cases. Lip pits and/or sinuses are the cardinal features of this syndrome, present in 70–80% of VWS patients. 2 They are often associated with accessory salivary glands that empty into the pits, sometimes leading to embarrassing visible discharge. 45

Collaboration


Dive into the Nicole Revencu's collaboration.

Top Co-Authors

Avatar

Miikka Vikkula

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Laurence M. Boon

Cliniques Universitaires Saint-Luc

View shared research outputs
Top Co-Authors

Avatar

Bénédicte Bayet

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar

Etienne Sokal

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Romain Vanwijck

Cliniques Universitaires Saint-Luc

View shared research outputs
Top Co-Authors

Avatar

Yves Gillerot

Cliniques Universitaires Saint-Luc

View shared research outputs
Top Co-Authors

Avatar

Yves Sznajer

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catheline Vilain

Free University of Brussels

View shared research outputs
Researchain Logo
Decentralizing Knowledge