Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole Rideau is active.

Publication


Featured researches published by Nicole Rideau.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2003

Hormonal and metabolic responses to overfeeding in three genotypes of ducks

S. Davail; Nicole Rideau; G. Guy; Jean-Marc André; Dominique Hermier; Robert Hoo-Paris

Muscovy, Pekin and Mule duck are different in their body weight. To make a valid comparison in the lipid metabolism between these three genotypes, overfeeding was carried out by providing the animals with amounts of food in proportion to their body weight. Under these conditions, Muscovy ducks developed a strong liver steatosis, whereas it was not very pronounced in the Mule ducks and even less in the Pekin ducks. On the contrary, Pekin ducks showed a much marked extrahepatic fattening. At the beginning of overfeeding, there was a similarity in the three genotypes as regards the post-heparin lipoprotein-lipase (LPL) activity and the insulin and glucagon concentrations. After 10 days of overfeeding, the LPL activity dramatically fell in Muscovy and in Mule ducks, whereas it remained steady in Pekin ducks. Compared to values found at the beginning of the overfeeding period, plasma glucagon and insulin shown no evolution, except for the insulin of Pekin ducks which was dramatically higher. Those data suggest that high plasma insulin concentrations measured in Pekin ducks after 10 days of overfeeding can be responsible for the maintenance of the LPL activity, which favors the extrahepatic fattening to the detriment of liver steatosis.


Journal of Animal Science | 2013

Thermal manipulation of the embryo modifies the physiology and body composition of broiler chickens reared in floor pens without affecting breast meat processing quality.

Thomas Loyau; Cécile Berri; L. Bedrani; Sonia Métayer-Coustard; Christophe Praud; M. J. Duclos; Sophie Tesseraud; Nicole Rideau; Nadia Everaert; S. Yahav; Sandrine Mignon-Grasteau; Anne Collin

Selection in broiler chickens has increased muscle mass without similar development of the cardiovascular and respiratory systems, resulting in limited ability to sustain high ambient temperatures. The aim of this study was to determine the long-lasting effects of heat manipulation of the embryo on the physiology, body temperature (Tb), growth rate and meat processing quality of broiler chickens reared in floor pens. Broiler chicken eggs were incubated in control conditions (37.8°C, 56% relative humidity; RH) or exposed to thermal manipulation (TM; 12 h/d, 39.5°C, 65% RH) from d 7 to 16 of embryogenesis. This study was planned in a pedigree design to identify possible heritable characters for further selection of broiler chickens to improve thermotolerance. Thermal manipulation did not affect hatchability but resulted in lower Tb at hatching and until d 28 post-hatch, with associated changes in plasma thyroid hormone concentrations. At d 34, chickens were exposed to a moderate heat challenge (5 h, 32°C). Greater O2 saturation and reduced CO2 partial pressure were observed (P < 0.05) in the venous blood of TM than in that of control chickens, suggesting long-term respiratory adaptation. At slaughter age, TM chickens were 1.4% lighter and exhibited 8% less relative abdominal fat pad than controls. Breast muscle yield was enhanced by TM, especially in females, but without significant change in breast meat characteristics (pH, color, drip loss). Plasma glucose/insulin balance was affected (P < 0.05) by thermal treatments. The heat challenge increased the heterophil/lymphocyte ratio in controls (P < 0.05) but not in TM birds, possibly reflecting a lower stress status in TM chickens. Interestingly, broiler chickens had moderate heritability estimates for the plasma triiodothyronine/thyroxine concentration ratio at d 28 and comb temperature during the heat challenge on d 34 (h(2) > 0.17). In conclusion, TM of the embryo modified the physiology of broilers in the long term as a possible adaptation for heat tolerance, without affecting breast meat quality. This study highlights the value of 2 new heritable characters involved in thermoregulation for further broiler selection.


Poultry Science | 2010

Sequential feeding using whole wheat and a separate protein-mineral concentrate improved feed efficiency in laying hens.

M. Umar Faruk; Isabelle Bouvarel; Nathalie Même; Nicole Rideau; L. Roffidal; Hussaini M. Tukur; Denis Bastianelli; Yves Nys; Philippe Lescoat

The effect of feeding nutritionally different diets in sequential or loose-mix systems on the performance of laying hen was investigated from 16 to 46 wk of age. Equal proportions of whole wheat grain and protein-mineral concentrate (balancer diet) were fed either alternatively (sequential) or together (loose-mix) to ISA Brown hens. The control was fed a complete layer diet conventionally. Each treatment was allocated 16 cages and each cage contained 5 birds. Light was provided 16 h daily (0400 to 2000 h). Feed offered was controlled (121 g/bird per d) and distributed twice (4 and 11 h after lights-on). In the sequential treatment, only wheat was fed at first distribution, followed by balancer diet at the second distribution. In loose-mix, the 2 rations were mixed and fed together during the 2 distributions. Leftover feed was always removed before the next distribution. Sequential feeding reduced total feed intake when compared with loose-mix and control. It had lower wheat (-9 g/bird per d) but higher balancer (+1.7 g/bird per d) intakes than loose-mix. Egg production, egg mass, and egg weight were similar among treatments. This led to an improvement in efficiency of feed utilization in sequential compared with loose-mix and control (10 and 5%, respectively). Birds fed sequentially had lower calculated ME (kcal/bird per d) intake than those fed in loose-mix and control. Calculated CP (g/bird per d) intake was reduced in sequential compared with loose-mix and control. Sequentially fed hens were lighter in BW. However, they had heavier gizzard, pancreas, and liver. Similar liver lipid was observed among treatments. Liver glycogen was higher in loose-mix than the 2 other treatments. It was concluded that feeding whole wheat and balancer diet, sequentially or loosely mixed, had no negative effect on performance in laying hens. Thus, the 2 systems are alternative to conventional feeding. The increased efficiency of feed utilization in sequential feeding is an added advantage compared with loose-mix and thus could be employed in situations where it is practicable.


Animal | 2015

Cyclic variations in incubation conditions induce adaptive responses to later heat exposure in chickens: a review

Thomas Loyau; L. Bedrani; Cécile Berri; Sonia Métayer-Coustard; Christophe Praud; V. Coustham; Sandrine Mignon-Grasteau; M. J. Duclos; Sophie Tesseraud; Nicole Rideau; Christelle Hennequet-Antier; Nadia Everaert; S. Yahav; Anne Collin

Selection programs have enabled broiler chickens to gain muscle mass without similar enlargement of the cardiovascular and respiratory systems that are essential for thermoregulatory efficiency. Meat-type chickens cope with high ambient temperature by reducing feed intake and growth during chronic and moderate heat exposure. In case of acute heat exposure, a dramatic increase in morbidity and mortality can occur. In order to alleviate heat stress in the long term, research has recently focused on early thermal manipulation. Aimed at stimulation of long-term thermotolerance, the thermal manipulation of embryos is a method based on fine tuning of incubation conditions, taking into account the level and duration of increases in temperature and relative humidity during a critical period of embryogenesis. The consequences of thermal manipulation on the performance and meat quality of broiler chickens have been explored to ensure the potential application of this strategy. The physiological basis of the method is the induction of epigenetic and metabolic mechanisms that control body temperature in the long term. Early thermal manipulation can enhance poultry resistance to environmental changes without much effect on growth performance. This review presents the main strategies of early heat exposure and the physiological concepts on which these methods were based. The cellular mechanisms potentially underlying the adaptive response are discussed as well as the potential interest of thermal manipulation of embryos for poultry production.


Nutrition Research Reviews | 2014

Nutritional regulation of glucokinase: a cross-species story

Stéphane Panserat; Nicole Rideau; Sergio Polakof

The glucokinase (GK) enzyme (EC 2.7.1.1.) is essential for the use of dietary glucose because it is the first enzyme to phosphorylate glucose in excess in different key tissues such as the pancreas and liver. The objective of the present review is not to fully describe the biochemical characteristics and the genetics of this enzyme but to detail its nutritional regulation in different vertebrates from fish to human. Indeed, the present review will describe the existence of the GK enzyme in different animal species that have naturally different levels of carbohydrate in their diets. Thus, some studies have been performed to analyse the nutritional regulation of the GK enzyme in humans and rodents (having high levels of dietary carbohydrates in their diets), in the chicken (moderate level of carbohydrates in its diet) and rainbow trout (no carbohydrate intake in its diet). All these data illustrate the nutritional importance of the GK enzyme irrespective of feeding habits, even in animals known to poorly use dietary carbohydrates (carnivorous species).


British Journal of Nutrition | 2000

Glucose-insulin relationships and thyroid status of cockerels selected for high or low residual food consumption.

Jean-François Gabarrou; Pierre Andre Geraert; John Williams; Laurent Ruffier; Nicole Rideau

The plasma glucose-insulin relationships and thyroid status were investigated in two lines of adult cockerels divergently selected for high (R+) or low (R-) residual food consumption (RFC). For a given body weight, R+ birds had a 74% higher food intake than R- birds. Plasma glucose concentrations were significantly lower in the R+ line compared with the R- when fasted, whereas R+ birds exhibited a significantly lower plasma insulin concentration than R- birds either in fed or fasted state. After an overnight fast, R+ birds also exhibited a higher sensitivity to exogenous insulin in view of its more pronounced hypoglycaemic effect. After an oral glucose load, the glucose disposal of R+ cockerels was faster despite lower glucose-induced plasma insulin concentration. Whilst plasma triacylglycerol concentrations were lower in the R+ line when fed, plasma non-esterified fatty acid concentrations were higher in fasted R+ than R- cockerels (684 v. 522 mumol/l). Higher plasma triiodothyronine concentrations were observed in fed R+ compared with R- birds (3.0 v. 2.1 nmol/l respectively). The higher plasma concentrations of triiodothyronine associated with lower concentrations of insulin could account for the leanness and the elevated diet-induced thermogenesis previously observed in the R+ line.


PLOS ONE | 2014

Thermal Manipulation during Embryogenesis Has Long-Term Effects on Muscle and Liver Metabolism in Fast-Growing Chickens

Thomas Loyau; Sonia Métayer-Coustard; Cécile Berri; Sabine Crochet; Estelle Cailleau-Audouin; Mélanie Sannier; Pascal Chartrin; Christophe Praud; Christelle Hennequet-Antier; Nicole Rideau; Nathalie Couroussé; Sandrine Mignon-Grasteau; Nadia Everaert; M. J. Duclos; S. Yahav; Sophie Tesseraud; Anne Collin

Fast-growing chickens have a limited ability to tolerate high temperatures. Thermal manipulation during embryogenesis (TM) has previously been shown to lower chicken body temperature (Tb) at hatching and to improve thermotolerance until market age, possibly resulting from changes in metabolic regulation. The aim of this study was to evaluate the long-term effects of TM (12 h/d, 39.5°C, 65% RH from d 7 to 16 of embryogenesis vs. 37.8°C, 56% RH continuously) and of a subsequent heat challenge (32°C for 5 h at 34 d) on the mRNA expression of metabolic genes and cell signaling in the Pectoralis major muscle and the liver. Gene expression was analyzed by RT-qPCR in 8 chickens per treatment, characterized by low Tb in the TM groups and high Tb in the control groups. Data were analyzed using the general linear model of SAS considering TM and heat challenge within TM as main effects. TM had significant long-term effects on thyroid hormone metabolism by decreasing the muscle mRNA expression of deiodinase DIO3. Under standard rearing conditions, the expression of several genes involved in the regulation of energy metabolism, such as transcription factor PGC-1α, was affected by TM in the muscle, whereas for other genes regulating mitochondrial function and muscle growth, TM seemed to mitigate the decrease induced by the heat challenge. TM increased DIO2 mRNA expression in the liver (only at 21°C) and reduced the citrate synthase activity involved in the Krebs cycle. The phosphorylation level of p38 Mitogen-activated-protein kinase regulating the cell stress response was higher in the muscle of TM groups compared to controls. In conclusion, markers of energy utilization and growth were either changed by TM in the Pectoralis major muscle and the liver by thermal manipulation during incubation as a possible long-term adaptation limiting energy metabolism, or mitigated during heat challenge.


General and Comparative Endocrinology | 2008

Induction of glucokinase in chicken liver by dietary carbohydrates

Nicole Rideau; Hanaâ Berradi; Sandrine Skiba-Cassy; S. Panserat; Estelle Cailleau-Audouin; Joëlle Dupont

We recently provided evidence of the presence of glucokinase (GCK) in the chicken liver [Berradi, H., Taouis, M., Cassy, S., Rideau, N., 2005. Glucokinase in chicken (Gallus gallus). Partial cDNA cloning, immunodetection and activity determination. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 141, 129-139]. In the present study we addressed the question of whether nutritional regulation of GCK occurs. Several nutritional conditions were compared in chickens (5 weeks old) previously trained to meal-feeding. One group was left in the fasted state (F: 24h) and one was tested at the end of the 2h meal (refed: RF). Two other 2h meal-refed groups received an acute oral saccharose load (6ml/kg BW) just before the 2h meal and were sacrificed either at the end of the meal (Saccharose refed, SRF) or 3h later (SRF+3). Liver GCK mRNA and protein levels did not differ between F, RF and SRF chickens but were significantly increased in SRF+3 chickens (2-fold, p<0.05). GCK activity did not differ between F and RF chickens but increased significantly in SRF and SRF+3 chickens (1.7-fold, p<0.05). Chicken liver GCK expression (mRNA and protein) and activity were therefore inducible in these chickens by feeding a meal with acute oral administration of carbohydrate. These and recent findings demonstrating insulin dependency of the liver GCK mRNA and protein strongly suggest that GCK may have an important role in carbohydrate metabolism, including that of the chicken. However, even in these highly stimulatory conditions, liver GCK activity remained relatively low in comparison with other species. The latter result may partly explain the high plasma glucose level in the chicken.


PLOS ONE | 2015

Impact of Selection for Digestive Efficiency on Microbiota Composition in the Chicken.

Sandrine Mignon-Grasteau; Agnès Narcy; Nicole Rideau; Céline Chantry-Darmon; Marie-Yvonne Boscher; Nadine Sellier; Marie Chabault; Barbara Konsak-Ilievski; Elisabeth Le Bihan-Duval; Irène Gabriel

Objectives Feed efficiency and its digestive component, digestive efficiency, are key factors in the environmental impact and economic output of poultry production. The interaction between the host and intestinal microbiota has a crucial role in the determination of the ability of the bird to digest its food and to the birds’ feed efficiency. We therefore investigated the phenotypic and genetic relationships between birds’ efficiency and the composition of the cecal microbiota in a F2 cross between broiler lines divergently selected for their high or low digestive efficiency. Methods Analyses were performed on 144 birds with extreme feed efficiency values at 3 weeks, with feed conversion values of 1.41±0.05 and 2.02±0.04 in the efficient and non-efficient groups, respectively. The total numbers of Lactobacillus, L. salivarius, L. crispatus, C. coccoides, C. leptum and E. coli per gram of cecal content were measured. Results The two groups mainly differed in larger counts of Lactobacillus, L. salivarius and E. coli in less efficient birds. The equilibrium between bacterial groups was also affected, efficient birds showing higher C. leptum, C. coccoides and L. salivarius to E. coli ratios. The heritability of the composition of microbiota was also estimated and L. crispatus, C. leptum, and C. coccoides to E. coli ratios were moderately but significantly heritable (0.16 to 0.24). The coefficient of fecal digestive use of dry matter was genetically and positively correlated with L. crispatus, C. leptum, C. coccoides (0.50 to 0.76) and negatively with E. coli (-0.66). Lipid digestibility was negatively correlated with E. coli (-0.64), and AMEn positively correlated with C. coccoides and with the C. coccoides to Lactobacillus ratio (0.48 to 0.64). We also detected 14 Quantitative Trait Loci (QTL) for microbiota on the host genome, mostly on C. leptum and Lactobacillus. The QTL for C. leptum on GGA6 was close to genome-wide significance. This region mainly includes genes involved in anti-inflammatory responses and in the motility of the gastrointestinal tract.


British Poultry Science | 1983

Activities of amylase, trypsin and lipase in the pancreas and small intestine of the laying hen during egg formation

Nicole Rideau; Zafrira Nitzan; P. Mongin

1. During a cycle of 14 h artificial light and 10 h darkness, dry matter and enzyme concentrations were measured in the pancreas and gut of egg-forming hens. 2. Dry or fresh pancreas weight did not show significant variation but pancreatic enzyme activities increased gradually from 2 to 22 h after oviposition. 3. Total wet and dry matter contents of the small intestine gradually increased from 2 to 18 h after oviposition and then decreased significantly. Intestinal tryptic activity followed the same pattern whereas intestinal amylase gradually decreased from 2 h after oviposition; intestinal lipase activity tended to decrease during the light period (2 to 10 h after oviposition) and to increase during the dark period (14 to 22 h after oviposition). 4. By contrast, patterns of enzyme activity in the pancreas were similar. It is proposed that modification of the chyme and transit rates during the day may affect pancreatic enzyme fate and distribution in the small intestine. 5. In non-egg-forming birds intestinal contents and enzyme activities were less than in egg-forming birds. The reverse was observed in the case of the pancreas where contents and enzyme activities were increased. A relationship with food intake pattern is discussed.

Collaboration


Dive into the Nicole Rideau's collaboration.

Top Co-Authors

Avatar

Sophie Tesseraud

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Anne Collin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean Simon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

M. J. Duclos

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sandrine Mignon-Grasteau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sonia Métayer-Coustard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Cécile Berri

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pascal Chartrin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sabine Crochet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nadia Everaert

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge