Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole Salès is active.

Publication


Featured researches published by Nicole Salès.


Proceedings of the National Academy of Sciences of the United States of America | 2009

MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction

Jannet Kocerha; Mohammad Ali Faghihi; Miguel A. López-Toledano; Jia Huang; Amy J. Ramsey; Marc G. Caron; Nicole Salès; David Willoughby; Joacim Elmén; Henrik Frydenlund Hansen; Henrik Ørum; Sakari Kauppinen; Paul J. Kenny; Claes Wahlestedt

N-methyl-d-aspartate (NMDA) glutamate receptors are regulators of fast neurotransmission and synaptic plasticity in the brain. Disruption of NMDA-mediated glutamate signaling has been linked to behavioral deficits displayed in psychiatric disorders such as schizophrenia. Recently, noncoding RNA molecules such as microRNAs (miRNAs) have emerged as critical regulators of neuronal functions. Here we show that pharmacological (dizocilpine) or genetic (NR1 hypomorphism) disruption of NMDA receptor signaling reduces levels of a brain-specific miRNA, miR-219, in the prefrontal cortex (PFC) of mice. Consistent with a role for miR-219 in NMDA receptor signaling, we identify calcium/calmodulin-dependent protein kinase II γ subunit (CaMKIIγ), a component of the NMDA receptor signaling cascade, as a target of miR-219. In vivo inhibition of miR-219 by specific antimiR in the murine brain significantly modulated behavioral responses associated with disrupted NMDA receptor transmission. Furthermore, pretreatment with the antipsychotic drugs haloperidol and clozapine prevented dizocilpine-induced effects on miR-219. Taken together, these data support an integral role for miR-219 in the expression of behavioral aberrations associated with NMDA receptor hypofunction.


PLOS Pathogens | 2007

In Vitro and In Vivo Neurotoxicity of Prion Protein Oligomers

Steve Simoneau; Human Rezaei; Nicole Salès; Gunnar Kaiser-Schulz; Maxime Lefebvre-Roque; Catherine Vidal; Jean Guy Fournier; Julien Comte; Franziska Wopfner; Jeanne Grosclaude; Hermann M. Schätzl; Corinne Ida Lasmézas

The mechanisms underlying prion-linked neurodegeneration remain to be elucidated, despite several recent advances in this field. Herein, we show that soluble, low molecular weight oligomers of the full-length prion protein (PrP), which possess characteristics of PrP to PrPsc conversion intermediates such as partial protease resistance, are neurotoxic in vitro on primary cultures of neurons and in vivo after subcortical stereotaxic injection. Monomeric PrP was not toxic. Insoluble, fibrillar forms of PrP exhibited no toxicity in vitro and were less toxic than their oligomeric counterparts in vivo. The toxicity was independent of PrP expression in the neurons both in vitro and in vivo for the PrP oligomers and in vivo for the PrP fibrils. Rescue experiments with antibodies showed that the exposure of the hydrophobic stretch of PrP at the oligomeric surface was necessary for toxicity. This study identifies toxic PrP species in vivo. It shows that PrP-induced neurodegeneration shares common mechanisms with other brain amyloidoses like Alzheimer disease and opens new avenues for neuroprotective intervention strategies of prion diseases targeting PrP oligomers.


Journal of Virology | 2003

Evaluation of Quinacrine Treatment for Prion Diseases

A. Barret; Fabrizio Tagliavini; Gianluigi Forloni; Clive Bate; Mario Salmona; Laura Colombo; A. De Luigi; Lucia Limido; S. Suardi; Giacomina Rossi; Frédéric Auvré; K. T. Adjou; Nicole Salès; Alun Williams; Corinne Ida Lasmézas; Jean-Philippe Deslys

ABSTRACT Based on in vitro observations in scrapie-infected neuroblastoma cells, quinacrine has recently been proposed as a treatment for Creutzfeldt-Jakob disease (CJD), including a new variant CJD which is linked to contamination of food by the bovine spongiform encephalopathy (BSE) agent. The present study investigated possible mechanisms of action of quinacrine on prions. The ability of quinacrine to interact with and to reduce the protease resistance of PrP peptide aggregates and PrPres of human and animal origin were analyzed, together with its ability to inhibit the in vitro conversion of the normal prion protein (PrPc) to the abnormal form (PrPres). Furthermore, the efficiencies of quinacrine and chlorpromazine, another tricyclic compound, were examined in different in vitro models and in an experimental murine model of BSE. Quinacrine efficiently hampered de novo generation of fibrillogenic prion protein and PrPres accumulation in ScN2a cells. However, it was unable to affect the protease resistance of preexisting PrP fibrils and PrPres from brain homogenates, and a “curing” effect was obtained in ScGT1 cells only after lengthy treatment. In vivo, no detectable effect was observed in the animal model used, consistent with other recent studies and preliminary observations in humans. Despite its ability to cross the blood-brain barrier, the use of quinacrine for the treatment of CJD is questionable, at least as a monotherapy. The multistep experimental approach employed here could be used to test new therapeutic regimes before their use in human trials.


The Lancet | 2004

Tissue distribution of bovine spongiform encephalopathy agent in primates after intravenous or oral infection.

Christian Herzog; Nicole Salès; Etchegaray N; Aurore Charbonnier; Sophie Freire; Dominique Dormont; Jean Philippe Deslys; Corinne Ida Lasmézas

BACKGROUND The disease-associated form of prion protein (PrP(res)) has been noted in lymphoreticular tissues in patients with variant Creutzfeldt-Jakob disease (vCJD). Thus, the disease could be transmitted iatrogenically by surgery or use of blood products. We aimed to assess transmissibility of the bovine spongiform encephalopathy (BSE) agent to primates by the intravenous route and study its tissue distribution compared with infection by the oral route. METHODS Cynomolgus macaques were infected either intravenously or orally with brain homogenates from first-passage animals with BSE. They were clinically monitored for occurrence of neurological signs and killed humanely at the terminal stage of the disease. Brain, lymphoreticular tissues, digestive tract, and peripheral nerves were obtained and analysed by sandwich ELISA and immunohistochemistry for quantitative and qualitative assessment of their PrP(res) content. FINDINGS Incubation periods after intravenous transmission of BSE were much shorter than after oral infection. We noted that PrP(res) was present in lymphoreticular tissues such as spleen and tonsils and in the entire gut from the duodenum to the rectum. In the gut, PrP(res) was present in Peyers patches and in the enteric nervous system and nerve fibres of intestinal mucosa. Furthermore, PrP(res) was found in locomotor peripheral nerves and the autonomic nervous system. Amount of PrP(res) ranged from 0.02% to more than 10% of that recorded in brain. Distribution of PrP(res) was similar in animals infected by the intravenous or oral route. INTERPRETATION Our findings suggest that the possible risk of vCJD linked to endoscopic procedures might be currently underestimated. Human iatrogenic vCJD cases infected intravenously raise the same public-health concerns as primary cases and need the same precautionary measures with respect to blood and tissue donations and surgical procedures.


PLOS ONE | 2008

Atypical BSE (BASE) transmitted from asymptomatic aging cattle to a primate.

Emmanuel Comoy; Cristina Casalone; Nathalie Lescoutra-Etchegaray; Gianluigi Zanusso; Sophie Freire; Dominique Marcé; Frédéric Auvré; Marie-Magdeleine Ruchoux; Sergio Ferrari; Salvatore Monaco; Nicole Salès; Maria Caramelli; Philippe Leboulch; Paul Brown; Corinne Ida Lasmézas; Jean Philippe Deslys

Background Human variant Creutzfeldt-Jakob Disease (vCJD) results from foodborne transmission of prions from slaughtered cattle with classical Bovine Spongiform Encephalopathy (cBSE). Atypical forms of BSE, which remain mostly asymptomatic in aging cattle, were recently identified at slaughterhouses throughout Europe and North America, raising a question about human susceptibility to these new prion strains. Methodology/Principal Findings Brain homogenates from cattle with classical BSE and atypical (BASE) infections were inoculated intracerebrally into cynomolgus monkeys (Macacca fascicularis), a non-human primate model previously demonstrated to be susceptible to the original strain of cBSE. The resulting diseases were compared in terms of clinical signs, histology and biochemistry of the abnormal prion protein (PrPres). The single monkey infected with BASE had a shorter survival, and a different clinical evolution, histopathology, and prion protein (PrPres) pattern than was observed for either classical BSE or vCJD-inoculated animals. Also, the biochemical signature of PrPres in the BASE-inoculated animal was found to have a higher proteinase K sensitivity of the octa-repeat region. We found the same biochemical signature in three of four human patients with sporadic CJD and an MM type 2 PrP genotype who lived in the same country as the infected bovine. Conclusion/Significance Our results point to a possibly higher degree of pathogenicity of BASE than classical BSE in primates and also raise a question about a possible link to one uncommon subset of cases of apparently sporadic CJD. Thus, despite the waning epidemic of classical BSE, the occurrence of atypical strains should temper the urge to relax measures currently in place to protect public health from accidental contamination by BSE-contaminated products.


The Lancet | 2005

Risk of oral infection with bovine spongiform encephalopathy agent in primates.

Corinne Ida Lasmézas; Emmanuel Comoy; Stephen A. C. Hawkins; Christian Herzog; Franck Mouthon; Timm Konold; Frédéric Auvré; Evelyne Correia; Nathalie Lescoutra-Etchegaray; Nicole Salès; G. A. H. Wells; Paul Brown; Jean-Philippe Deslys

The uncertain extent of human exposure to bovine spongiform encephalopathy (BSE)--which can lead to variant Creutzfeldt-Jakob disease (vCJD)--is compounded by incomplete knowledge about the efficiency of oral infection and the magnitude of any bovine-to-human biological barrier to transmission. We therefore investigated oral transmission of BSE to non-human primates. We gave two macaques a 5 g oral dose of brain homogenate from a BSE-infected cow. One macaque developed vCJD-like neurological disease 60 months after exposure, whereas the other remained free of disease at 76 months. On the basis of these findings and data from other studies, we made a preliminary estimate of the food exposure risk for man, which provides additional assurance that existing public health measures can prevent transmission of BSE to man.


Journal of Virology | 2005

PrPTSE Distribution in a Primate Model of Variant, Sporadic, and Iatrogenic Creutzfeldt-Jakob Disease

Christian Herzog; Julie Rivière; Nathalie Lescoutra-Etchegaray; Aurore Charbonnier; Virginie Leblanc; Nicole Salès; Jean-Philippe Deslys; Corinne Ida Lasmézas

ABSTRACT Human prion diseases, such as Creutzfeldt-Jakob disease (CJD), are neurodegenerative and fatal. Sporadic CJD (sCJD) can be transmitted between humans through medical procedures involving highly infected organs, such as the central nervous system. However, in variant CJD (vCJD), which is due to human contamination with the bovine spongiform encephalopathy (BSE) agent, lymphoreticular tissue also harbors the transmissible spongiform encephalopathy-associated prion protein (PrPTSE), which poses a particularly acute risk for iatrogenic transmission. Two blood transfusion-related cases are already documented. In addition, the recent observation of PrPTSE in spleen and muscle in sCJD raised the possibility that peripheral PrPTSE is not limited to vCJD cases. We aimed to clarify the peripheral pathogenesis of human TSEs by using a nonhuman primate model which mimics human diseases. A highly sensitive enzyme-linked immunosorbent assay was adapted to the detection of extraneural PrPTSE. We show that affected organs can be divided into two groups. The first is peripheral organs accumulating large amounts of PrPTSE, which represent a high risk of iatrogenic transmission. This category comprises only lymphoreticular organs in the vCJD/BSE model. The second is organs with small amounts of PrPTSE associated with nervous structures. These are the muscles, adrenal glands, and enteric nervous system in the sporadic, iatrogenic, and variant CJD models. In contrast to the first set of organs, this low level of tissue contamination is not strain restricted and seems to be linked to secondary centrifugal spread of the agent through nerves. It might represent a risk for iatrogenic transmission, formerly underestimated despite previous reports of low rates of transmission from peripheral organs of humans to nonhuman primates (5, 10). This study provides an additional experimental basis for the classification of human organs into different risk categories and a rational re-evaluation of current risk management measures.


PLOS ONE | 2009

Prion Strain Discrimination Based on Rapid In Vivo Amplification and Analysis by the Cell Panel Assay

Yervand Eduard Karapetyan; Paula Saá; Sukhvir P. Mahal; Gian Franco Sferrazza; Alexandra Sherman; Nicole Salès; Charles Weissmann; Corinne Ida Lasmézas

Prion strain identification has been hitherto achieved using time-consuming incubation time determinations in one or more mouse lines and elaborate neuropathological assessment. In the present work, we make a detailed study of the properties of PrP-overproducing Tga20 mice. We show that in these mice the four prion strains examined are rapidly and faithfully amplified and can subsequently be discriminated by a cell-based procedure, the Cell Panel Assay.


Journal of Molecular Neuroscience | 2002

Effects of the polyene antibiotic derivative MS-8209 on the astrocyte lysosomal system of scrapie-infected hamsters

Vladimir Grigoriev; Karim Adjou; Nicole Salès; Steve Simoneau; Jean-Philippe Deslys; Michel Seman; Dominique Dormont; Jean-Guy Fournier

Amphotericine B (AmB), a macrolide polyene antibiotic, is one of a few drugs that has shown therapeutic properties in scrapie-infected hamster. Its beneficial effect on survival time is mostly marked when animals are treated with its derivative MS-8209. To explore the MS-8209 effect at the cellular level, we investigated at the light and electron microscopy levels, the sequential appearance and distribution of PrP concurrently with histopathological changes in hamsters that were infected intracerebrally with the 263 K scrapie strain and treated or not with the drug. The first histopathological modifications and PrP immunostaining were observed in the thalamus and at the inoculation site where the drug caused a delay in the appearance of lesions and PrP accumulation. Using immunoelectron microscopy, at 70 d postinfection, the inoculation site of untreated animals showed an accumulation of PrP in plaque areas constitued by filaments mixed with alterated membrane structures and in developed lysosomal system of reactive astrocytes. Most of the numerous lysosomes containing PrP showed intra-organelle filaments. In contrast, in MS-8209 treated animals, the number of lysosomes was significantly lower (p<0.0038), with very few organelles harboring PrP. Our results suggest that in this scrapie model, MS-8209 treatment delays the disease by preventing the replication of the scrapie agent at the inoculation site where the astrocytes appear to be the first cells producing abnormal PrP. The lysosomal system of these astrocytes could constitute a privileged target for MS-8209.


Journal of General Virology | 2003

A novel generation of heparan sulfate mimetics for the treatment of prion diseases

Karim Adjou; Steve Simoneau; Nicole Salès; F. Lamoury; Dominique Dormont; Dulce Papy-Garcia; Denis Barritault; Jean-Philippe Deslys; Corinne Ida Lasmézas

Collaboration


Dive into the Nicole Salès's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corinne Lasmezas

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Brown

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra Sherman

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles Weissmann

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge