Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole Soranzo is active.

Publication


Featured researches published by Nicole Soranzo.


Nature | 2010

Integrating common and rare genetic variation in diverse human populations.

David Altshuler; Richard A. Gibbs; Leena Peltonen; Emmanouil T. Dermitzakis; Stephen F. Schaffner; Fuli Yu; Penelope E. Bonnen; de Bakker Pi; Panos Deloukas; Stacey Gabriel; R. Gwilliam; Sarah Hunt; Michael Inouye; Xiaoming Jia; Aarno Palotie; Melissa Parkin; Pamela Whittaker; Kyle Chang; Alicia Hawes; Lora Lewis; Yanru Ren; David A. Wheeler; Donna M. Muzny; C. Barnes; Katayoon Darvishi; Joshua M. Korn; Kristiansson K; Cin-Ty A. Lee; McCarrol Sa; James Nemesh

Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions in 692 of these individuals. This integrated data set of common and rare alleles, called ‘HapMap 3’, includes both SNPs and copy number polymorphisms (CNPs). We characterized population-specific differences among low-frequency variants, measured the improvement in imputation accuracy afforded by the larger reference panel, especially in imputing SNPs with a minor allele frequency of ≤5%, and demonstrated the feasibility of imputing newly discovered CNPs and SNPs. This expanded public resource of genome variants in global populations supports deeper interrogation of genomic variation and its role in human disease, and serves as a step towards a high-resolution map of the landscape of human genetic variation.


WOS | 2013

Common genetic determinants of vitamin D insufficiency: a genome-wide association study

Thomas J. Wang; Feng Zhang; J. Brent Richards; Bryan Kestenbaum; Joyce B. J. van Meurs; Diane J. Berry; Douglas P. Kiel; Elizabeth A. Streeten; Claes Ohlsson; Daniel L. Koller; Leena Peltonen; Jason D. Cooper; Paul F. O'Reilly; Denise K. Houston; Nicole L. Glazer; Liesbeth Vandenput; Munro Peacock; J. Shi; Fernando Rivadeneira; Mark McCarthy; Pouta Anneli; Ian H. de Boer; Massimo Mangino; Bernet Kato; Deborah J. Smyth; Sarah L. Booth; Paul F. Jacques; Greg Burke; Mark O. Goodarzi; Ching-Lung Cheung

BACKGROUND Vitamin D is crucial for maintenance of musculoskeletal health, and might also have a role in extraskeletal tissues. Determinants of circulating 25-hydroxyvitamin D concentrations include sun exposure and diet, but high heritability suggests that genetic factors could also play a part. We aimed to identify common genetic variants affecting vitamin D concentrations and risk of insufficiency. METHODS We undertook a genome-wide association study of 25-hydroxyvitamin D concentrations in 33 996 individuals of European descent from 15 cohorts. Five epidemiological cohorts were designated as discovery cohorts (n=16 125), five as in-silico replication cohorts (n=9367), and five as de-novo replication cohorts (n=8504). 25-hydroxyvitamin D concentrations were measured by radioimmunoassay, chemiluminescent assay, ELISA, or mass spectrometry. Vitamin D insufficiency was defined as concentrations lower than 75 nmol/L or 50 nmol/L. We combined results of genome-wide analyses across cohorts using Z-score-weighted meta-analysis. Genotype scores were constructed for confirmed variants. FINDINGS Variants at three loci reached genome-wide significance in discovery cohorts for association with 25-hydroxyvitamin D concentrations, and were confirmed in replication cohorts: 4p12 (overall p=1.9x10(-109) for rs2282679, in GC); 11q12 (p=2.1x10(-27) for rs12785878, near DHCR7); and 11p15 (p=3.3x10(-20) for rs10741657, near CYP2R1). Variants at an additional locus (20q13, CYP24A1) were genome-wide significant in the pooled sample (p=6.0x10(-10) for rs6013897). Participants with a genotype score (combining the three confirmed variants) in the highest quartile were at increased risk of having 25-hydroxyvitamin D concentrations lower than 75 nmol/L (OR 2.47, 95% CI 2.20-2.78, p=2.3x10(-48)) or lower than 50 nmol/L (1.92, 1.70-2.16, p=1.0x10(-26)) compared with those in the lowest quartile. INTERPRETATION Variants near genes involved in cholesterol synthesis, hydroxylation, and vitamin D transport affect vitamin D status. Genetic variation at these loci identifies individuals who have substantially raised risk of vitamin D insufficiency. FUNDING Full funding sources listed at end of paper (see Acknowledgments).


Nature | 2011

Human metabolic individuality in biomedical and pharmaceutical research

Karsten Suhre; So-Youn Shin; Ann-Kristin Petersen; Robert P. Mohney; David Meredith; Brigitte Wägele; Elisabeth Altmaier; Panos Deloukas; Jeanette Erdmann; Elin Grundberg; Christopher J. Hammond; Martin Hrabé de Angelis; Gabi Kastenmüller; Anna Köttgen; Florian Kronenberg; Massimo Mangino; Christa Meisinger; Thomas Meitinger; Hans-Werner Mewes; Michael V. Milburn; Cornelia Prehn; Johannes Raffler; Janina S. Ried; Werner Römisch-Margl; Nilesh J. Samani; Kerrin S. Small; H.-Erich Wichmann; Guangju Zhai; Thomas Illig; Tim D. Spector

Genome-wide association studies (GWAS) have identified many risk loci for complex diseases, but effect sizes are typically small and information on the underlying biological processes is often lacking. Associations with metabolic traits as functional intermediates can overcome these problems and potentially inform individualized therapy. Here we report a comprehensive analysis of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We identified 37 genetic loci associated with blood metabolite concentrations, of which 25 show effect sizes that are unusually high for GWAS and account for 10–60% differences in metabolite levels per allele copy. Our associations provide new functional insights for many disease-related associations that have been reported in previous studies, including those for cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism and Crohn’s disease. The study advances our knowledge of the genetic basis of metabolic individuality in humans and generates many new hypotheses for biomedical and pharmaceutical research.


The Lancet | 2008

Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study

J.B. Richards; Fernando Rivadeneira; Michael Inouye; Tomi Pastinen; Nicole Soranzo; Scott G. Wilson; Toby Andrew; Mario Falchi; R. Gwilliam; Kourosh R. Ahmadi; Ana M. Valdes; P. Arp; Pamela Whittaker; Dominique J. Verlaan; Mila Jhamai; Vasudev Kumanduri; M. Moorhouse; J.B. van Meurs; Albert Hofman; Huibert A. P. Pols; Deborah J. Hart; Guangju Zhai; Bernet Kato; B.H. Mullin; Feng Zhang; Panos Deloukas; A.G. Uitterlinden; Tim D. Spector

Summary Background Osteoporosis is diagnosed by the measurement of bone mineral density, which is a highly heritable and multifactorial trait. We aimed to identify genetic loci that are associated with bone mineral density. Methods In this genome-wide association study, we identified the most promising of 314 075 single nucleotide polymorphisms (SNPs) in 2094 women in a UK study. We then tested these SNPs for replication in 6463 people from three other cohorts in western Europe. We also investigated allelic expression in lymphoblast cell lines. We tested the association between the replicated SNPs and osteoporotic fractures with data from two studies. Findings We identified genome-wide evidence for an association between bone mineral density and two SNPs (p<5×10−8). The SNPs were rs4355801, on chromosome 8, near to the TNFRSF11B (osteoprotegerin) gene, and rs3736228, on chromosome 11 in the LRP5 (lipoprotein-receptor-related protein) gene. A non-synonymous SNP in the LRP5 gene was associated with decreased bone mineral density (rs3736228, p=6·3×10−12 for lumbar spine and p=1·9×10−4 for femoral neck) and an increased risk of both osteoporotic fractures (odds ratio [OR] 1·3, 95% CI 1·09–1·52, p=0·002) and osteoporosis (OR 1·3, 1·08–1·63, p=0·008). Three SNPs near the TNFRSF11B gene were associated with decreased bone mineral density (top SNP, rs4355801: p=7·6×10−10 for lumbar spine and p=3·3×10−8 for femoral neck) and increased risk of osteoporosis (OR 1·2, 95% CI 1·01–1·42, p=0·038). For carriers of the risk allele at rs4355801, expression of TNFRSF11B in lymphoblast cell lines was halved (p=3·0×10−6). 1883 (22%) of 8557 people were at least heterozygous for these risk alleles, and these alleles had a cumulative association with bone mineral density (trend p=2·3×10−17). The presence of both risk alleles increased the risk of osteoporotic fractures (OR 1·3, 1·08–1·63, p=0·006) and this effect was independent of bone mineral density. Interpretation Two gene variants of key biological proteins increase the risk of osteoporosis and osteoporotic fracture. The combined effect of these risk alleles on fractures is similar to that of most well-replicated environmental risk factors, and they are present in more than one in five white people, suggesting a potential role in screening. Funding Wellcome Trust, European Commission, NWO Investments, Arthritis Research Campaign, Chronic Disease Research Foundation, Canadian Institutes of Health Research, European Society for Clinical and Economic Aspects of Osteoporosis, Genome Canada, Genome Quebéc, Canada Research Chairs, National Health and Medical Research Council of Australia, and European Union.


Nature Genetics | 2009

Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies

Fernando Rivadeneira; Unnur Styrkarsdottir; Karol Estrada; Bjarni V. Halldórsson; Yi-Hsiang Hsu; J. Brent Richards; M. Carola Zillikens; Fotini K. Kavvoura; Najaf Amin; Yurii S. Aulchenko; L. Adrienne Cupples; Panagiotis Deloukas; Serkalem Demissie; Elin Grundberg; Albert Hofman; Augustine Kong; David Karasik; Joyce B. J. van Meurs; Ben A. Oostra; Tomi Pastinen; Huibert A. P. Pols; Gunnar Sigurdsson; Nicole Soranzo; Gudmar Thorleifsson; Unnur Thorsteinsdottir; Frances M. K. Williams; Scott G. Wilson; Yanhua Zhou; Stuart H. Ralston; Cornelia M. van Duijn

Bone mineral density (BMD) is a heritable complex trait used in the clinical diagnosis of osteoporosis and the assessment of fracture risk. We performed meta-analysis of five genome-wide association studies of femoral neck and lumbar spine BMD in 19,195 subjects of Northern European descent. We identified 20 BMD loci that reached genome-wide significance (GWS; P < 5 × 10−8), of which 13 map to regions not previously associated with this trait: 1p31.3 (GPR177), 2p21 (SPTBN1), 3p22 (CTNNB1), 4q21.1 (MEPE), 5q14 (MEF2C), 7p14 (STARD3NL), 7q21.3 (FLJ42280), 11p11.2 (LRP4, ARHGAP1, F2), 11p14.1 (DCDC5), 11p15 (SOX6), 16q24 (FOXL1), 17q21 (HDAC5) and 17q12 (CRHR1). The meta-analysis also confirmed at GWS level seven known BMD loci on 1p36 (ZBTB40), 6q25 (ESR1), 8q24 (TNFRSF11B), 11q13.4 (LRP5), 12q13 (SP7), 13q14 (TNFSF11) and 18q21 (TNFRSF11A). The many SNPs associated with BMD map to genes in signaling pathways with relevance to bone metabolism and highlight the complex genetic architecture that underlies osteoporosis and variation in BMD.


PLOS Genetics | 2009

A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose.

Fumihiko Takeuchi; Ralph McGinnis; Stephane Bourgeois; C. Barnes; Niclas Eriksson; Nicole Soranzo; Pamela Whittaker; Venkatesh Ranganath; Vasudev Kumanduri; William M. McLaren; Lennart Holm; Jonatan D. Lindh; Anders Rane; Mia Wadelius; Panos Deloukas

We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5×10−7) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that ∼30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another ∼12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<10−78) at SNPs clustering near VKORC1 and the second lowest p-values (p<10−31) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p = 8.3×10−10) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose.


Nature Genetics | 2012

Mapping cis- and trans-regulatory effects across multiple tissues in twins

Elin Grundberg; Kerrin S. Small; Åsa K. Hedman; Alexandra C. Nica; Alfonso Buil; Sarah Keildson; Jordana T. Bell; Yang T-P.; Eshwar Meduri; Amy Barrett; James Nisbett; Magdalena Sekowska; Alicja Wilk; Shin S-Y.; Daniel Glass; Mary E. Travers; Josine Min; S. M. Ring; Karen M Ho; Gudmar Thorleifsson; A. P. S. Kong; Unnur Thorsteindottir; Chrysanthi Ainali; Antigone S. Dimas; Neelam Hassanali; Catherine E. Ingle; David Knowles; Maria Krestyaninova; Christopher E. Lowe; P. Di Meglio

Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many expression quantitative trait locus (eQTL) studies, typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis effect on expression cannot be accounted for by common cis variants, a finding that reveals the contribution of low-frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene, and we identify several replicating trans variants that act predominantly in a tissue-restricted manner and may regulate the transcription of many genes.


Nature Genetics | 2010

A genome-wide perspective of genetic variation in human metabolism

Thomas Illig; Christian Gieger; Guangju Zhai; Werner Römisch-Margl; Rui Wang-Sattler; Cornelia Prehn; Elisabeth Altmaier; Gabi Kastenmüller; Bernet Kato; Hans-Werner Mewes; Thomas Meitinger; Martin Hrabé de Angelis; Florian Kronenberg; Nicole Soranzo; H-Erich Wichmann; Tim D. Spector; Jerzy Adamski; Karsten Suhre

Serum metabolite concentrations provide a direct readout of biological processes in the human body, and they are associated with disorders such as cardiovascular and metabolic diseases. We present a genome-wide association study (GWAS) of 163 metabolic traits measured in human blood from 1,809 participants from the KORA population, with replication in 422 participants of the TwinsUK cohort. For eight out of nine replicated loci (FADS1, ELOVL2, ACADS, ACADM, ACADL, SPTLC3, ETFDH and SLC16A9), the genetic variant is located in or near genes encoding enzymes or solute carriers whose functions match the associating metabolic traits. In our study, the use of metabolite concentration ratios as proxies for enzymatic reaction rates reduced the variance and yielded robust statistical associations with P values ranging from 3 × 10−24 to 6.5 × 10−179. These loci explained 5.6%–36.3% of the observed variance in metabolite concentrations. For several loci, associations with clinically relevant parameters have been reported previously.


Nature Genetics | 2009

A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium.

Nicole Soranzo; Tim D. Spector; Massimo Mangino; Brigitte Kühnel; Augusto Rendon; Alexander Teumer; Christina Willenborg; Benjamin J. Wright; Li Chen; Mingyao Li; Perttu Salo; Benjamin F. Voight; Philippa Burns; Roman A. Laskowski; Yali Xue; Stephan Menzel; David Altshuler; John R. Bradley; Suzannah Bumpstead; Mary-Susan Burnett; Joseph M. Devaney; Angela Döring; Roberto Elosua; Stephen E. Epstein; Wendy N. Erber; Mario Falchi; Stephen F. Garner; Mohammed J. R. Ghori; Alison H. Goodall; Rhian Gwilliam

The number and volume of cells in the blood affect a wide range of disorders including cancer and cardiovascular, metabolic, infectious and immune conditions. We consider here the genetic variation in eight clinically relevant hematological parameters, including hemoglobin levels, red and white blood cell counts and platelet counts and volume. We describe common variants within 22 genetic loci reproducibly associated with these hematological parameters in 13,943 samples from six European population-based studies, including 6 associated with red blood cell parameters, 15 associated with platelet parameters and 1 associated with total white blood cell count. We further identified a long-range haplotype at 12q24 associated with coronary artery disease and myocardial infarction in 9,479 cases and 10,527 controls. We show that this haplotype demonstrates extensive disease pleiotropy, as it contains known risk loci for type 1 diabetes, hypertension and celiac disease and has been spread by a selective sweep specific to European and geographically nearby populations.


PLOS Genetics | 2012

The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits

Benjamin F. Voight; Hyun Min Kang; Jinhui Ding; C. Palmer; Carlo Sidore; Peter S. Chines; N. P. Burtt; Christian Fuchsberger; Yanming Li; J. Erdmann; Timothy M. Frayling; Iris M. Heid; Anne U. Jackson; Toby Johnson; Tuomas O. Kilpeläinen; Cecilia M. Lindgren; Andrew P. Morris; Inga Prokopenko; Joshua C. Randall; Richa Saxena; Nicole Soranzo; Elizabeth K. Speliotes; Tanya M. Teslovich; Eleanor Wheeler; Jared Maguire; Melissa Parkin; Simon Potter; Nigel W. Rayner; Neil R. Robertson; Kathy Stirrups

Genome-wide association studies have identified hundreds of loci for type 2 diabetes, coronary artery disease and myocardial infarction, as well as for related traits such as body mass index, glucose and insulin levels, lipid levels, and blood pressure. These studies also have pointed to thousands of loci with promising but not yet compelling association evidence. To establish association at additional loci and to characterize the genome-wide significant loci by fine-mapping, we designed the “Metabochip,” a custom genotyping array that assays nearly 200,000 SNP markers. Here, we describe the Metabochip and its component SNP sets, evaluate its performance in capturing variation across the allele-frequency spectrum, describe solutions to methodological challenges commonly encountered in its analysis, and evaluate its performance as a platform for genotype imputation. The metabochip achieves dramatic cost efficiencies compared to designing single-trait follow-up reagents, and provides the opportunity to compare results across a range of related traits. The metabochip and similar custom genotyping arrays offer a powerful and cost-effective approach to follow-up large-scale genotyping and sequencing studies and advance our understanding of the genetic basis of complex human diseases and traits.

Collaboration


Dive into the Nicole Soranzo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Panos Deloukas

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guangju Zhai

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Hofman

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

David B. Goldstein

Columbia University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge