Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole Stephenson is active.

Publication


Featured researches published by Nicole Stephenson.


PLOS ONE | 2015

Patterns of Natural and Human-Caused Mortality Factors of a Rare Forest Carnivore, the Fisher (Pekania pennanti) in California

Leslie W. Woods; Greta M. Wengert; Nicole Stephenson; J. Mark Higley; Craig M. Thompson; Sean M. Matthews; Rick A. Sweitzer; Kathryn L. Purcell; Reginald H. Barrett; Stefan M. Keller; Patricia M. Gaffney; Megan E. B. Jones; Robert H. Poppenga; Janet E. Foley; Richard N. Brown; Deana L. Clifford; Benjamin N. Sacks

Wildlife populations of conservation concern are limited in distribution, population size and persistence by various factors, including mortality. The fisher (Pekania pennanti), a North American mid-sized carnivore whose range in the western Pacific United States has retracted considerably in the past century, was proposed for threatened status protection in late 2014 under the United States Endangered Species Act by the United States Fish and Wildlife Service in its West Coast Distinct Population Segment. We investigated mortality in 167 fishers from two genetically and geographically distinct sub-populations in California within this West Coast Distinct Population Segment using a combination of gross necropsy, histology, toxicology and molecular methods. Overall, predation (70%), natural disease (16%), toxicant poisoning (10%) and, less commonly, vehicular strike (2%) and other anthropogenic causes (2%) were causes of mortality observed. We documented both an increase in mortality to (57% increase) and exposure (6%) from pesticides in fishers in just the past three years, highlighting further that toxicants from marijuana cultivation still pose a threat. Additionally, exposure to multiple rodenticides significantly increased the likelihood of mortality from rodenticide poisoning. Poisoning was significantly more common in male than female fishers and was 7 times more likely than disease to kill males. Based on necropsy findings, suspected causes of mortality based on field evidence alone tended to underestimate the frequency of disease-related mortalities. This study is the first comprehensive investigation of mortality causes of fishers and provides essential information to assist in the conservation of this species.


Journal of Parasitology | 2013

Serum chemistry, hematologic, and post-mortem findings in free-ranging bobcats (Lynx rufus) with notoedric mange.

Laurel E. K. Serieys; Janet E. Foley; Sean D. Owens; Leslie W. Woods; Erin E. Boydston; Lisa M. Lyren; Robert H. Poppenga; Deana L. Clifford; Nicole Stephenson; Jaime Rudd; Seth P. D. Riley

Abstract:  Notoedric mange was responsible for a population decline of bobcats (Lynx rufus) in 2 Southern California counties from 2002–2006 and is now reported to affect bobcats in Northern and Southern California. With this study we document clinical laboratory and necropsy findings for bobcats with mange. Bobcats in this study included free-ranging bobcats with mange (n = 34), a control group of free-ranging bobcats without mange (n = 11), and a captive control group of bobcats without mange (n = 19). We used 2 control groups to evaluate potential anomalies due to capture stress or diet. Free-ranging healthy and mange-infected bobcats were trapped or salvaged. Animals were tested by serum biochemistry, complete blood count, urine protein and creatinine, body weight, necropsy, and assessment for anticoagulant rodenticide residues in liver tissue. Bobcats with severe mange were emaciated, dehydrated, and anemic with low serum creatinine, hyperphosphatemia, hypoglycemia, hypernatremia, and hyperchloremia, and sometimes septicemic when compared to control groups. Liver enzymes and leukocyte counts were elevated in free-ranging, recently captured bobcats whether or not they were infested with mange, suggesting capture stress. Bobcats with mange had lower levels of serum cholesterol, albumin, globulin, and total protein due to protein loss likely secondary to severe dermatopathy. Renal insufficiency was unlikely in most cases, as urine protein:creatinine ratios were within normal limits. A primary gastrointestinal loss of protein or blood was possible in a few cases, as evidenced by elevated blood urea nitrogen, anemia, intestinal parasitism, colitis, gastric hemorrhage, and melena. The prevalence of exposure to anticoagulant rodenticides was 100% (n = 15) in bobcats with mange. These findings paint a picture of debilitating, multisystemic disease with infectious and toxic contributing factors that can progress to death in individuals and potential decline in populations.


Vector-borne and Zoonotic Diseases | 2015

Demographic Characteristics and Infectious Diseases of a Population of American Black Bears in Humboldt County, California

Nicole Stephenson; J. Mark Higley; Jaime Sajecki; Bruno B. Chomel; Richard N. Brown; Janet E. Foley

American black bears (Ursus americanus) are common, widely distributed, and broad-ranging omnivorous mammals in northern California forests. Bears may be susceptible to pathogens infecting both domestic animals and humans. Monitoring bear populations, particularly in changing ecosystems, is important to understanding ecological features that could affect bear population health and influence the likelihood that bears may cause adverse impacts on humans. In all, 321 bears were captured between May, 2001, and October, 2003, and blood samples were collected and tested for multiple zoonotic and vector-borne diseases. We found a PCR prevalence of 10% for Anaplasma phagocytophilum, and a seroprevalence of 28% for Toxoplasma gondii, 26% for Borrelia burgdorferi, 26% for A. phagocytophilum, 8% for Trichinella spiralis, 8% for Francisella tularensis and 1% for Yersinia pestis. In addition, we tested bears for pathogens of domestic dogs and found a seroprevalence of 15% for canine distemper virus and 0.6% for canine parvovirus. Our findings show that black bears can become infected with pathogens that are an important public health concern, as well as pathogens that can affect both domestic animals and other wildlife species.


Parasitology | 2016

A synthetic review of notoedres species mites and mange.

Janet E. Foley; Laurel E. K. Serieys; Nicole Stephenson; Seth P. D. Riley; Colin W. Foley; Megan K. Jennings; Greta M. Wengert; Winston Vickers; Erin E. Boydston; Lisa L. Lyren; Joanne G. Moriarty; Deana L. Clifford

Notoedric mange, caused by obligately parasitic sarcoptiform Notoedres mites, is associated with potentially fatal dermatitis with secondary systemic disease in small mammals, felids and procyonids among others, as well as an occasional zoonosis. We describe clinical spectra in non-chiropteran hosts, review risk factors and summarize ecological and epidemiological studies. The genus is disproportionately represented on rodents. Disease in felids and procyonids ranges from very mild to death. Knowledge of the geographical distribution of the mites is highly inadequate, with focal hot spots known for Notoedres cati in domestic cats and bobcats. Predisposing genetic and immunological factors are not known, except that co-infection with other parasites and anticoagulant rodenticide toxicoses may contribute to severe disease. Treatment of individual animals is typically successful with macrocytic lactones such as selamectin, but herd or wildlife population treatment has not been undertaken. Transmission requires close contact and typically is within a host species. Notoedric mange can kill half all individuals in a population and regulate host population below non-diseased density for decades, consistent with frequency-dependent transmission or spillover from other hosts. Epidemics are increasingly identified in various hosts, suggesting global change in suitable environmental conditions or increased reporting bias.


Journal of Wildlife Diseases | 2013

Development and validation of a fecal PCR assay for Notoedres cati and application to notoedric mange cases in bobcats (Lynx rufus) in Northern California, USA.

Nicole Stephenson; Deana L. Clifford; S. Joy Worth; Laurel E. K. Serieys; Janet E. Foley

Notoedric mange in felids is a devastating disease caused by a hypersensitivity reaction to the mite Notoedres cati. The burrowing of the mite causes intense pruritis resulting in self-mutilation, secondary bacterial infection, and often death of affected felids if left untreated. Our understanding of how notoedric mange is maintained in felid populations, and the true geographic extent of infestations, has been hampered because wild felids are elusive and, thus, traditional diagnostic methods are difficult to implement. To create a noninvasive diagnostic test, we developed and validated a novel PCR assay to detect N. cati DNA in fecal samples of bobcats (Lynx rufus) and used this assay to investigate a recent outbreak of mange in northern California, United States. Although the fecal PCR assay was 100% specific and could detect as few as 1.9 mites/200 μg of feces, it had a moderate sensitivity of 52.6%, potentially due to intermittent shedding of mites in feces or fecal PCR inhibitors. In a field investigation, 12% (95% confidence interval [CI]: 0.06, 0.23) of fecal samples (n=65) collected from Rancho San Antonia County Park and Open Space Preserve in Santa Clara County, California were PCR-positive for N. cati. When this estimate was adjusted for test sensitivity, the corrected proportion for fecal samples containing N. cati was 23% (95% CI: 0.14, 0.36), suggesting widespread mange in this area. This novel PCR assay will be an important tool to assess the distribution and spread of notoedric mange in bobcats and could be validated to test other wild felids such as mountain lions (Puma concolor). The assay could also be used to detect notoedric mange in domestic cats (Felis catus), particularly feral cats, which may also suffer from mange and could represent an important contributor to mange in periurban bobcat populations.


Journal of Wildlife Diseases | 2017

SARCOPTIC MANGE IN ENDANGERED KIT FOXES (VULPES MACROTIS MUTICA): CASE HISTORIES, DIAGNOSES, AND IMPLICATIONS FOR CONSERVATION.

Brian L. Cypher; Jaime Rudd; Tory L. Westall; Leslie W. Woods; Nicole Stephenson; Janet E. Foley; Donald Richardson; Deana L. Clifford

Abstract The San Joaquin kit fox (Vulpes macrotis mutica) is a federally endangered small carnivore whose distribution is limited to the San Joaquin Valley in central California. Population decline is due to profound habitat loss, and conservation of all remaining populations is critical. A robust urban population occurs in the city of Bakersfield. In spring of 2013, putative cases of mange were reported in this population. Mites from affected animals were confirmed to be Sarcoptes scabiei morphologically and by DNA sequencing. By the end of 2014, 15 cases of kit foxes with mange had been confirmed. As with other species, sarcoptic mange in kit foxes is characterized by intense pruritus and dermatitis, caused by mites burrowing into the epidermal layers, as well as alopecia, hyperkeratosis, and encrustations, secondary bacterial infections, and finally extreme morbidity and death. Of the 15 cases, six foxes were found dead, six were captured but died during attempted rehabilitation, and three were successfully treated. We have no evidence that untreated kit foxes can recover from mange. Sarcoptic mange constitutes a significant threat to the Bakersfield kit fox population and could pose an even greater threat to this imperiled species if it spreads to populations in nearby natural lands.


Journal of Wildlife Diseases | 2013

Feline Infectious Peritonitis in a Mountain Lion (Puma concolor), California, USA

Nicole Stephenson; Pamela K. Swift; Robert B. Moeller; S. Joy Worth; Janet E. Foley

Feline infectious peritonitis (FIP) is a fatal immune-mediated vasculitis of felids caused by a mutant form of a common feline enteric virus, feline enteric coronavirus. The virus can attack many organ systems and causes a broad range of signs, commonly including weight loss and fever. Regardless of presentation, FIP is ultimately fatal and often presents a diagnostic challenge. In May 2010, a malnourished young adult male mountain lion (Puma concolor) from Kern County, California, USA was euthanized because of concern for public safety, and a postmortem examination was performed. Gross necropsy and histopathologic examination revealed necrotizing, multifocal myocarditis; necrotizing, neutrophilic, and histiocytic myositis and vasculitis of the tunica muscularis layer of the small and large intestines; and embolic, multifocal, interstitial pneumonia. Feline coronavirus antigen was detected in both the heart and intestinal tissue by immunohistochemistry. A PCR for coronavirus performed on kidney tissue was positive, confirming a diagnosis of FIP. Although coronavirus infection has been documented in mountain lions by serology, this is the first confirmed report of FIP.


PLOS ONE | 2017

Are disease reservoirs special? Taxonomic and life history characteristics

Benjamin T. Plourde; Tristan L. Burgess; Evan A. Eskew; Tara Roth; Nicole Stephenson; Janet E. Foley

Pathogens that spill over between species cause a significant human and animal health burden. Here, we describe characteristics of animal reservoirs that are required for pathogen spillover. We assembled and analyzed a database of 330 disease systems in which a pathogen spills over from a reservoir of one or more species. Three-quarters of reservoirs included wildlife, and 84% included mammals. Further, 65% of pathogens depended on a community of reservoir hosts, rather than a single species, for persistence. Among mammals, the most frequently identified reservoir hosts were rodents, artiodactyls, and carnivores. The distribution among orders of mammalian species identified as reservoirs did not differ from that expected by chance. Among disease systems with high priority pathogens and epidemic potential, we found birds, primates, and bats to be overrepresented. We also analyzed the life history traits of mammalian reservoir hosts and compared them to mammals as a whole. Reservoir species had faster life history characteristics than mammals overall, exhibiting traits associated with greater reproductive output rather than long-term survival. Thus, we find that in many respects, reservoirs of spillover pathogens are indeed special. The described patterns provide a useful resource for studying and managing emerging infectious diseases.


Javma-journal of The American Veterinary Medical Association | 2015

Incidence rates and risk factors for owner-reported adverse events following vaccination of dogs that did or did not receive a Leptospira vaccine.

Peng Ju Yao; Nicole Stephenson; Janet E. Foley; Chuck R. Toussieng; Thomas B. Farver; Jane E. Sykes; Katryna A. Fleer

OBJECTIVE To determine incidence rates (IRs) and potential risk factors for owner-reported adverse events (AEs) following vaccination of dogs that did or did not receive a Leptospira vaccine. DESIGN Observational, retrospective cohort study. ANIMALS 130,557 dogs. PROCEDURES Electronic records of mobile veterinary clinics from June 2012 to March 2013 were searched to identify dogs that received ≥ 1 vaccine in a given visit. Signalment data, vaccinations received, medications administered, and owner-reported clinical signs consistent with AEs that developed ≤ 5 days after vaccination were recorded. Associations between potential risk factors and owner-reported AEs were evaluated by logistic regression analysis. RESULTS The IR/10,000 dogs for owner-reported postvaccination AEs was 26.3 (95% CI, 23.6 to 29.2), whereas that for dogs that received a Leptospira vaccine alone or with other vaccines was 53.0 (95% CI, 42.8 to 64.9). Significant factors for increasing or decreasing risk of AEs were as follows: receiving a Leptospira vaccine (adjusted OR, 2.13), age at vaccination 1 to < 7 or ≥ 7 years (vs a referent of < 6 months; adjusted OR, 0.54 and 0.44, respectively), and weight 13.6 to < 22.7 kg (30 to < 50 lb) and 22.7 to < 45.5 kg (50 to 100 lb [vs a referent of < 4.5 kg {10 lb}]; adjusted OR, 0.48 and 0.55, respectively). Hypersensitivity reactions were rare (IR, 6.5/10,000 dogs), and IRs for these events did not differ significantly between dogs vaccinated with or without a Leptospira component. CONCLUSIONS AND CLINICAL RELEVANCE The overall IR for owner-reported postvaccination AEs was low. Results suggested vaccination against Leptospira (an organism that can cause fatal disease) is safe in the majority of cases, slightly increasing the risk of owner-reported AEs but not associated with a significant increase in hypersensitivity reactions, compared with other vaccinations administered.


Ticks and Tick-borne Diseases | 2017

Diversity of rickettsiae in a rural community in northern California

Nicole Stephenson; Alexandra Blaney; Deana L. Clifford; Greta M. Wengert; Patrick Foley; Richard N. Brown; Mark Higley; Sarah Buckenberger-Mantovani; Janet E. Foley

Far northern California forests are highly biodiverse in wildlife reservoirs and arthropod vectors that may propagate rickettsial pathogens in nature. The proximity of small rural communities to these forests puts people and domestic animals at risk of vector-borne infection due to spillover from wildlife. The current study was conducted to document exposure to rickettsial pathogens in people and domestic animals in a rural community, and identify which rickettsiae are present in sylvatic and peri-domestic environments near this community. Blood samples from people, domestic animals (dogs, cats, and horses) and wild carnivores were tested for Rickettsia spp. antibodies and DNA (people and domestic animals only) by serology and real time (RT)-PCR, respectively. Ectoparasites were collected from dogs, wild carnivores and from vegetation by flagging, and tested for Rickettsia spp. DNA by RT-PCR. DNA sequencing of the rickettsial 17kDa protein gene or the ompA gene was used for species identification. Despite a seroprevalence of 3% in people, 42% in dogs, 79% in cats, 33% in gray foxes, and 83% in bobcats, RT-PCR on blood was consistently negative, likely because the sensitivity of this test is low, as Rickettsia spp. do not often circulate in high numbers in the blood. Rickettsia spp. DNA was found in four flea species collected from bobcats and Ctenocephalides felis collected from domestic dogs. All amplicons sequenced from fleas were R. felis. Ixodes pacificus collected by flagging were commonly infected with a Rickettsia sp. endosymbiont. Rickettsia rhipicephali DNA was found in Dermacentor variabilis from dogs, black bears, a gray fox, and a D. occidentalis collected by flagging. Dermacentor variabilis from dogs and black bears also contained R. montanensis DNA. Multiple Rickettsia spp. (including species with zoonotic and pathogenic potential) were found among human biting arthropod vectors of both wild and domestic carnivores and on flags. Knowledge of the diversity of Rickettsia spp. that are present within arthropod vectors to which people and domestic animals are exposed is an essential first step is making an accurate diagnosis and in better understanding the epidemiology of these potential pathogens. Within-host and vector interaction among these species may play a role in spillover into human and domestic animals.

Collaboration


Dive into the Nicole Stephenson's collaboration.

Top Co-Authors

Avatar

Janet E. Foley

University of California

View shared research outputs
Top Co-Authors

Avatar

Deana L. Clifford

California Department of Fish and Wildlife

View shared research outputs
Top Co-Authors

Avatar

Asli Mete

University of California

View shared research outputs
Top Co-Authors

Avatar

Douglas A. Bell

California Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaime Rudd

University of California

View shared research outputs
Top Co-Authors

Avatar

Krysta H. Rogers

California Department of Fish and Wildlife

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge