Nicole Tegtmeyer
University College Dublin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicole Tegtmeyer.
FEBS Journal | 2011
Nicole Tegtmeyer; Silja Wessler; Steffen Backert
Helicobacter pylori is a very successful human‐specific bacterium worldwide. Infections of the stomach with this pathogen can induce pathologies, including chronic gastritis, peptic ulcers and even gastric cancer. Highly virulent H. pylori strains encode the cytotoxin‐associated gene (cag)‐pathogenicity island, which expresses a type IV secretion system (T4SS). This T4SS forms a syringe‐like pilus structure for the injection of virulence factors such as the CagA effector protein into host target cells. This is achieved by a number of T4SS proteins, including CagI, CagL, CagY and CagA, which by itself binds the host cell integrin member β1 followed by delivery of CagA across the host cell membrane. A role of CagA interaction with phosphatidylserine has also been shown to be important for the injection process. After delivery, CagA becomes phosphorylated by oncogenic tyrosine kinases and mimics a host cell factor for the activation or inactivation of some specific intracellular signalling pathways. We review recent progress aiming to characterize the CagA‐dependent and CagA‐independent signalling capabilities of the T4SS, which include the induction of membrane dynamics, disruption of cell–cell junctions and actin‐cytoskeletal rearrangements, as well as pro‐inflammatory, cell cycle‐related and anti‐apoptotic transcriptional responses. The contribution of these signalling pathways to pathogenesis during H. pylori infections is discussed.
Helicobacter | 2010
Steffen Backert; Nicole Tegtmeyer; Matthias Selbach
Several bacterial pathogens inject virulence proteins into host target cells that are substrates of eukaryotic tyrosine kinases. One of the key examples is the Helicobacter pylori CagA effector protein which is translocated by a type‐IV secretion system. Injected CagA becomes tyrosine‐phosphorylated on EPIYA sequence motifs by Src and Abl family kinases. CagA then binds to and activates/inactivates multiple signaling proteins in a phosphorylation‐dependent and phosphorylation‐independent manner. A recent proteomic screen systematically identified eukaryotic binding partners of the EPIYA phosphorylation sites of CagA and similar sites in other bacterial effectors by high‐resolution mass spectrometry. Individual phosphorylation sites recruited a surprisingly high number of interaction partners suggesting that each phosphorylation site can interfere with many downstream pathways. We now count 20 reported cellular binding partners of CagA, which represents the highest quantitiy among all yet known virulence‐associated effector proteins in the microbial world. This complexity generates a highly remarkable and puzzling scenario. In addition, the first crystal structure of CagA provided us with new information on the function of this important virulence determinant. Here we review the recent advances in characterizing the multiple binding signaling activities of CagA. Injected CagA can act as a ‘master key’ that evolved the ability to highjack multiple host cell signalling cascades, which include the induction of membrane dynamics, actin‐cytoskeletal rearrangements and the disruption of cell‐to‐cell junctions as well as proliferative, pro‐inflammatory and anti‐apoptotic nuclear responses. The discovery that different pathogens use this common strategy to subvert host cell functions suggests that more examples will emerge soon.
EMBO Reports | 2010
Benjamin Hoy; Martin Löwer; Christiane Weydig; Gert Carra; Nicole Tegtmeyer; Tim Geppert; Peter Schröder; Norbert Sewald; Steffen Backert; Gisbert Schneider; Silja Wessler
Mammalian and prokaryotic high‐temperature requirement A (HtrA) proteins are chaperones and serine proteases with important roles in protein quality control. Here, we describe an entirely new function of HtrA and identify it as a new secreted virulence factor from Helicobacter pylori, which cleaves the ectodomain of the cell‐adhesion protein E‐cadherin. E‐cadherin shedding disrupts epithelial barrier functions allowing H. pylori designed to access the intercellular space. We then designed a small‐molecule inhibitor that efficiently blocks HtrA activity, E‐cadherin cleavage and intercellular entry of H. pylori.
Journal of Clinical Investigation | 2012
Doreen Mueller; Nicole Tegtmeyer; Sabine Brandt; Yoshio Yamaoka; Eimear De Poire; Dionyssios Sgouras; Silja Wessler; Javier Torres; Adam J. Smolka; Steffen Backert
Many bacterial pathogens inject into host cells effector proteins that are substrates for host tyrosine kinases such as Src and Abl family kinases. Phosphorylated effectors eventually subvert host cell signaling, aiding disease development. In the case of the gastric pathogen Helicobacter pylori, which is a major risk factor for the development of gastric cancer, the only known effector protein injected into host cells is the oncoprotein CagA. Here, we followed the hierarchic tyrosine phosphorylation of H. pylori CagA as a model system to study early effector phosphorylation processes. Translocated CagA is phosphorylated on Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs EPIYA-A, EPIYA-B, and EPIYA-C in Western strains of H. pylori and EPIYA-A, EPIYA-B, and EPIYA-D in East Asian strains. We found that c-Src only phosphorylated EPIYA-C and EPIYA-D, whereas c-Abl phosphorylated EPIYA-A, EPIYA-B, EPIYA-C, and EPIYA-D. Further analysis revealed that CagA molecules were phosphorylated on 1 or 2 EPIYA motifs, but never simultaneously on 3 motifs. Furthermore, none of the phosphorylated EPIYA motifs alone was sufficient for inducing AGS cell scattering and elongation. The preferred combination of phosphorylated EPIYA motifs in Western strains was EPIYA-A and EPIYA-C, either across 2 CagA molecules or simultaneously on 1. Our study thus identifies a tightly regulated hierarchic phosphorylation model for CagA starting at EPIYA-C/D, followed by phosphorylation of EPIYA-A or EPIYA-B. These results provide insight for clinical H. pylori typing and clarify the role of phosphorylated bacterial effector proteins in pathogenesis.
Molecular Microbiology | 2010
Annelie Olofsson; Anna Vallström; Katja Petzold; Nicole Tegtmeyer; Jürgen Schleucher; Sven R. Carlsson; Rainer Haas; Steffen Backert; Sun Nyunt Wai; Gerhard Gröbner; Anna Arnqvist
Helicobacter pylori can cause peptic ulcer disease and/or gastric cancer. Adhesion of bacteria to the stomach mucosa is an important contributor to the vigour of infection and resulting virulence. H. pylori adheres primarily via binding of BabA adhesins to ABO/Lewis b (Leb) blood group antigens and the binding of SabA adhesins to sialyl‐Lewis x/a (sLex/a) antigens. Similar to most Gram‐negative bacteria, H. pylori continuously buds off vesicles and vesicles derived from pathogenic bacteria often include virulence‐associated factors. Here we biochemically characterized highly purified H. pylori vesicles. Major protein and phospholipid components associated with the vesicles were identified with mass spectroscopy and nuclear magnetic resonance. A subset of virulence factors present was confirmed by immunoblots. Additional functional and biochemical analysis focused on the vesicle BabA and SabA adhesins and their respective interactions to human gastric epithelium. Vesicles exhibit heterogeneity in their protein composition, which were specifically studied in respect to the BabA adhesin. We also demonstrate that the oncoprotein, CagA, is associated with the surface of H. pylori vesicles. Thus, we have explored mechanisms for intimate H. pylori vesicle–host interactions and found that the vesicles carry effector‐promoting properties that are important to disease development.
Cell Communication and Signaling | 2011
Steffen Backert; Marguerite Clyne; Nicole Tegtmeyer
Helicobacter pylori is a highly successful pathogen uniquely adapted to colonize humans. Gastric infections with this bacterium can induce pathology ranging from chronic gastritis and peptic ulcers to gastric cancer. More virulent H. pylori isolates harbour numerous well-known adhesins (BabA/B, SabA, AlpA/B, OipA and HopZ) and the cag (cytotoxin-associated genes) pathogenicity island encoding a type IV secretion system (T4SS). The adhesins establish tight bacterial contact with host target cells and the T4SS represents a needle-like pilus device for the delivery of effector proteins into host target cells such as CagA. BabA and SabA bind to blood group antigen and sialylated proteins respectively, and a series of T4SS components including CagI, CagL, CagY and CagA have been shown to target the integrin β1 receptor followed by injection of CagA across the host cell membrane. The interaction of CagA with membrane-anchored phosphatidylserine may also play a role in the delivery process. While substantial progress has been made in our current understanding of many of the above factors, the host cell receptors for OipA, HopZ and AlpA/B during infection are still unknown. Here we review the recent progress in characterizing the interactions of the various adhesins and structural T4SS proteins with host cell factors. The contribution of these interactions to H. pylori colonization and pathogenesis is discussed.
Cellular Microbiology | 2009
Nicole Tegtmeyer; Dana Zabler; Diana Schmidt; Roland Hartig; Sabine Brandt; Steffen Backert
Helicobacter pylori is the causative agent of gastric pathologies ranging from chronic gastritis to peptic ulcers and even cancer. Virulent strains carrying both the cag pathogenicity island (cagPAI) and the vacuolating cytotoxin VacA are key players in disease development. The cagPAI encodes a type IV secretion system (T4SS) which forms a pilus for injection of the CagA protein into gastric epithelial cells. Injected CagA undergoes tyrosine phosphorylation and induces actin‐cytoskeletal rearrangements involved in host cell scattering and elongation. We show here that the CagA‐induced responses can be inhibited in strains expressing highly active VacA. Further investigations revealed that VacA does not interfere with known activities of phosphorylated CagA such as inactivation of Src kinase and cortactin dephosphorylation. Instead, we demonstrate that VacA exhibits inactivating activities on the epidermal growth factor receptor EGFR and HER2/Neu, and subsequently Erk1/2 MAP kinase which are important for cell scattering and elongation. Inactivation of vacA gene, downregulation of the VacA receptor RPTP‐α, addition of EGF or expression of constitutive‐active MEK1 kinase restored the capability of H. pylori to induce the latter phenotypes. These data demonstrate that VacA can downregulate CagAs effects on epithelial cells, a novel molecular mechanism showing how H. pylori can avoid excessive cellular damage.
Journal of Biological Chemistry | 2010
Nicole Tegtmeyer; Roland Hartig; Robin M. Delahay; Manfred Rohde; Sabine Brandt; Jens Conradi; Seiichiro Takahashi; Adam J. Smolka; Norbert Sewald; Steffen Backert
Fibronectin, a 250-kDa eukaryotic extracellular matrix protein containing an RGD motif plays crucial roles in cell-cell communication, development, tissue homeostasis, and disease development. The highly complex fibrillar fibronectin meshwork orchestrates the functions of other extracellular matrix proteins, promoting cell adhesion, migration, and intracellular signaling. Here, we demonstrate that CagL, a 26-kDa protein of the gastric pathogen and type I carcinogen Helicobacter pylori, mimics fibronectin in various cellular functions. Like fibronectin, CagL contains a RGD motif and is located on the surface of the bacterial type IV secretion pili as previously shown. CagL binds to the integrin receptor α5β1 and mediates the injection of virulence factors into host target cells. We show that purified CagL alone can directly trigger intracellular signaling pathways upon contact with mammalian cells and can complement the spreading defect of fibronectin−/− knock-out cells in vitro. During interaction with various human and mouse cell lines, CagL mimics fibronectin in triggering cell spreading, focal adhesion formation, and activation of several tyrosine kinases in an RGD-dependent manner. Among the activated factors are the nonreceptor tyrosine kinases focal adhesion kinase and Src but also the epidermal growth factor receptor and epidermal growth factor receptor family member Her3/ErbB3. Interestingly, fibronectin activates a similar range of tyrosine kinases but not Her3/ErbB3. These findings suggest that the bacterial protein CagL not only exhibits functional mimicry with fibronectin but is also capable of activating fibronectin-independent signaling events. We thus postulate that CagL may contribute directly to H. pylori pathogenesis by promoting aberrant signaling cross-talk within host cells.
Gut Pathogens | 2012
Manja Boehm; Benjamin Hoy; Manfred Rohde; Nicole Tegtmeyer; Kristoffer T. Bæk; Omar A. Oyarzabal; Lone Brøndsted; Silja Wessler; Steffen Backert
BackgroundCampylobacter jejuni is one of the most important bacterial pathogens causing food-borne illness worldwide. Crossing the intestinal epithelial barrier and host cell entry by C. jejuni is considered the primary reason of damage to the intestinal tissue, but the molecular mechanisms as well as major bacterial and host cell factors involved in this process are still widely unclear.ResultsIn the present study, we characterized the serine protease HtrA (high-temperature requirement A) of C. jejuni as a secreted virulence factor with important proteolytic functions. Infection studies and in vitro cleavage assays showed that C. jejuni’s HtrA triggers shedding of the extracellular E-cadherin NTF domain (90 kDa) of non-polarised INT-407 and polarized MKN-28 epithelial cells, but fibronectin was not cleaved as seen for H. pylori’s HtrA. Deletion of the htrA gene in C. jejuni or expression of a protease-deficient S197A point mutant did not lead to loss of flagella or reduced bacterial motility, but led to severe defects in E-cadherin cleavage and transmigration of the bacteria across polarized MKN-28 cell layers. Unlike other highly invasive pathogens, transmigration across polarized cells by wild-type C. jejuni is highly efficient and is achieved within a few minutes of infection. Interestingly, E-cadherin cleavage by C. jejuni occurs in a limited fashion and transmigration required the intact flagella as well as HtrA protease activity, but does not reduce transepithelial electrical resistance (TER) as seen with Salmonella, Shigella, Listeria or Neisseria.ConclusionThese results suggest that HtrA-mediated E-cadherin cleavage is involved in rapid crossing of the epithelial barrier by C. jejuni via a very specific mechanism using the paracellular route to reach basolateral surfaces, but does not cleave the fibronectin receptor which is necessary for cell entry.
Gut | 2012
Tobias Wiedemann; Stefan Hofbaur; Nicole Tegtmeyer; Sylwia Huber; Norbert Sewald; Silja Wessler; Steffen Backert; Gabriele Rieder
Objective One of the most important hormones in the human stomach is the peptide gastrin. It is mainly required for the regulation of gastric pH but is also involved in growth and differentiation of gastric epithelial cells. In Helicobacter pylori infected patients, gastrin secretion can be upregulated by the pathogen, resulting in hypergastrinaemia. H pylori induced hypergastrinaemia is described as being a major risk factor for the development of gastric adenocarcinoma. Design In this study, the upstream receptor complex and bacterial factors involved in H pylori induced gastrin gene expression were investigated, utilising gastric epithelial cells which were stably transfected with a human gastrin promoter luciferase reporter construct. Results Integrin linked kinase (ILK) and integrin β5, but not integrin β1, played an important role in gastrin promoter activation. Interestingly, a novel CagL/integrin β5/ILK signalling complex was characterised as being important for H pylori induced gastrin expression. On interaction of H pylori with αvβ5-integrin and ILK, the epidermal growth factor receptor (EGFR) →Raf→mitogen activated protein kinase kinase (MEK)→extracellular signal regulated kinase (Erk) downstream signalling cascade was identified which plays a central role in H pylori gastrin induction. Conclusion The newly discovered recognition receptor complex could be a useful target in treating precancerous conditions triggered by H pylori induced hypergastrinaemia.