Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicoletta Depalo is active.

Publication


Featured researches published by Nicoletta Depalo.


Langmuir | 2011

Biofunctionalization of anisotropic nanocrystalline semiconductor-magnetic heterostructures.

Nicoletta Depalo; Pasquale Carrieri; Roberto Comparelli; Marinella Striccoli; Angela Agostiano; Luca Bertinetti; Claudia Innocenti; Claudio Sangregorio; M. Lucia Curri

Asymmetric binary nanocrystals (BNCs) formed by a spherical γ-Fe(2)O(3) magnetic domain epitaxially grown onto a lateral facet of a rodlike anatase TiO(2) nanorod have been functionalized with PEG-terminated phospholipids, resulting in a micellar system that enables the BNC dispersion in aqueous solution. The further processability of the obtained water-soluble BNC including PEG lipid micelles and their use in bioconjugation experiments has been successfully demonstrated by covalently binding to bovine serum albumin (BSA). The whole process has also been preliminarily performed on spherical iron oxide nanocrystals (NCs) and TiO(2) nanorods (NRs), which form single structural units in the heterostructures. Each step has been thoroughly monitored by using optical, structural, and electrophoretic techniques. In addition, an investigation of the magnetic behavior of the iron oxide NCs and BNCs, before and after incorporation into PEG lipid micelles and subsequently bioconjugation, has been carried out, revealing that the magnetic characteristics are mostly retained. The proposed approach to achieving water-soluble anisotropic BNCs and their bioconjugates has a large potential in catalysis and biomedicine and offers key functional building blocks for biosensor applications.


Journal of Colloid and Interface Science | 2008

Luminescent nanocrystals in phospholipid micelles for bioconjugation : An optical and structural investigation

Nicoletta Depalo; Antonia Mallardi; Roberto Comparelli; Marinella Striccoli; Angela Agostiano; M. L. Curri

Organic capped luminescent CdSe@ZnS nanocrystals (NCs) have been incorporated in block copolymer micelles, formed by polyethylene glycol modified phospholipids (PEG lipids). The obtained water soluble NC including PEG lipid micelles have been conjugated with bovine serum albumine (BSA). The entire process has been investigated by using optical, structural and electrophoretic complementary techniques. Such an integrated approach has allowed to elucidate critical issues, such as the time and temperature effects on the phase behavior of the PEG lipid/NC aggregate structures, the emitting properties of the NCs before and after micelle formation and bio-conjugation and the effect of conjugation on the biological moiety. The overall results provide relevant insight on the fabrication of the bio-conjugates, on their stability and on preparative procedure reproducibility, in view of the use of the resulting protein decorated NCs as multifunctional hybrid building blocks for the fabrication of a variety of supramolecular assemblies to exploit in biological sensing and diagnostic applications.


Acta Biomaterialia | 2016

Spray-dried mucoadhesives for intravesical drug delivery using N-acetylcysteine- and glutathione-glycol chitosan conjugates.

Nunzio Denora; Angela Lopedota; Mara Perrone; Valentino Laquintana; Rosa Maria Iacobazzi; Antonella Milella; Elisabetta Fanizza; Nicoletta Depalo; Annalisa Cutrignelli; Antonio Lopalco; Massimo Franco

UNLABELLED This work describes N-acetylcysteine (NAC)- and glutathione (GSH)-glycol chitosan (GC) polymer conjugates engineered as potential platform useful to formulate micro-(MP) and nano-(NP) particles via spray-drying techniques. These conjugates are mucoadhesive over the range of urine pH, 5.0-7.0, which makes them advantageous for intravesical drug delivery and treatment of local bladder diseases. NAC- and GSH-GC conjugates were generated with a synthetic approach optimizing reaction times and purification in order to minimize the oxidation of thiol groups. In this way, the resulting amount of free thiol groups immobilized per gram of NAC- and GSH-GC conjugates was 6.3 and 3.6mmol, respectively. These polymers were completely characterized by molecular weight, surface sulfur content, solubility at different pH values, substitution and swelling degree. Mucoadhesion properties were evaluated in artificial urine by turbidimetric and zeta (ζ)-potential measurements demonstrating good mucoadhesion properties, in particular for NAC-GC at pH 5.0. Starting from the thiolated polymers, MP and NP were prepared using both the Büchi B-191 and Nano Büchi B-90 spray dryers, respectively. The resulting two formulations were evaluated for yield, size, oxidation of thiol groups and ex-vivo mucoadhesion. The new spray drying technique provided NP of suitable size (<1μm) for catheter administration, low degree of oxidation, and sufficient mucoadhesion property with 9% and 18% of GSH- and NAC-GC based NP retained on pig mucosa bladder after 3h of exposure, respectively. STATEMENT OF SIGNIFICANCE The aim of the present study was first to optimize the synthesis of NAC-GC and GSH-GC, and preserve the oxidation state of the thiol moieties by introducing several optimizations of the already reported synthetic procedures that increase the mucoadhesive properties and avoid pH-dependent aggregation. Second, starting from these optimized thiomers, we studied the feasibility of manufacturing MP and NP by spray-drying techniques. The aim of this second step was to produce mucoadhesive drug delivery systems of adequate size for vesical administration by catheter, and comparable mucoadhesive properties with respect to the processed polymers, avoiding thiolic oxidation during the formulation. MP with acceptable size produced by spray-dryer Büchi B-191 were compared with NP made with the apparatus Nano Büchi B-90.


Soft Matter | 2014

Selective confinement of oleylamine capped Au nanoparticles in self-assembled PS-b-PEO diblock copolymer templates

A. Evelyn Di Mauro; Marinella Striccoli; Nicoletta Depalo; Elisabetta Fanizza; Laida Cano; Chiara Ingrosso; Angela Agostiano; M. Lucia Curri; Agnieszka Tercjak

Amphiphilic polystyrene-block-polyethylene oxide (PS-b-PEO) block copolymers (BCPs) have been demonstrated to be effective in directing organization of colloidal Au nanoparticles (NPs). Au NPs have been incorporated into the polymer and the different chemical affinity between the NP surface and the two blocks of the BCP has been used as a driving force of the assembling procedure. The morphology of the nanocomposites, prepared and fabricated as thin films, has been investigated by means of atomic force and scanning electron microscopies as a function of the NP content and BCP molecular weight. NPs have been effectively dispersed in PS-b-PEO hosts at any investigated content (up to 17 wt%) and a clear effect of the BCP properties on the final nanocomposite morphology has been highlighted. Finally, electrostatic force microscopy has demonstrated the conductive properties of the nanocomposite films, showing that the embedded Au NPs effectively convey their conductive properties to the film. The overall investigation has confirmed the selective confinement of the as-prepared surfactant-coated metal NPs in the PS block of PS-b-PEO, thus proposing a very simple and prompt assembling tool for nanopatterning, potentially suitable for optoelectronic, sensing and catalysis applications.


Nano Research | 2016

Integrin-targeting with peptide-bioconjugated semiconductor-magnetic nanocrystalline heterostructures

Gianpiero Valente; Nicoletta Depalo; Ivan de Paola; Rosa Maria Iacobazzi; Nunzio Denora; Valentino Laquintana; Roberto Comparelli; Emiliano Altamura; Tiziana Latronico; Michele Altomare; Elisabetta Fanizza; Marinella Striccoli; Angela Agostiano; Michele Saviano; Annarita Del Gatto; Laura Zaccaro; M. L. Curri

Binary asymmetric nanocrystals (BNCs), composed of a photoactive TiO2 nanorod joined with a superparamagnetic γ-Fe2O3 spherical domain, were embedded in polyethylene glycol modified phospholipid micelle and successfully bioconjugated to a suitably designed peptide containing an RGD motif. BNCs represent a relevant multifunctional nanomaterial, owing to the coexistence of two distinct domains in one particle, characterized by high photoactivity and magnetic properties, that is particularly suited for use as a phototherapy and hyperthermia agent as well as a magnetic probe in biological imaging. We selected the RGD motif in order to target integrin expressed on activated endothelial cells and several types of cancer cells. The prepared RGD-peptide/BNC conjugates, comprehensively monitored by using complementary optical and structural techniques, demonstrated a high stability and uniform dispersibility in biological media. The cytotoxicity of the RGD-peptide/BNC conjugates was studied in vitro. The cellular uptake of RGD-peptide conjugates in the cells, assessed by means of two distinct approaches, namely confocal microscopy analysis and emission spectroscopy determination in cell lysates, displayed selectivity of the RGD-peptide-BNC conjugate for the αvβ3 integrin. These RGD-peptide-BNC conjugates have a high potential for theranostic treatment of cancer.


Journal of Materials Chemistry C | 2014

Single white light emitting hybrid nanoarchitectures based on functionalized quantum dots

Elisabetta Fanizza; Carmine Urso; Vita Pinto; Antonio Cardone; Roberta Ragni; Nicoletta Depalo; M. Lucia Curri; Angela Agostiano; Gianluca M. Farinola; Marinella Striccoli

Colloidal white emitting nanostructures were successfully fabricated by covalently binding a blue emitting oligofluorene at the surface of silica beads, that incorporate orange luminescent colloidal CdSe@ZnS quantum dots (QDs). White light was achieved by carefully tuning the size of the QDs to complementarily match the emission color of the blue fluorophore and taking into account the delicate balance between the emission of the QDs in the core of the silica beads and the amount of the organic dye bound to the silica surface. The proposed approach is highly versatile as it can be extended to the fabrication of a variety of luminescent hybrid nano-objects, playing with the complementarity of the emission color of the inorganic and organic fluorophores at the nanoscale.


Nanoscale | 2013

Plasmon mediated super-absorber flexible nanocomposites for metamaterials

Antonio De Luca; Nicoletta Depalo; Elisabetta Fanizza; Marinella Striccoli; M. Lucia Curri; Melissa Infusino; Alireza R. Rashed; Massimo La Deda; Giuseppe Strangi

A flexible host has been selected to achieve, for the first time, functional nanocomposites based on CdSe@ZnS core-shell type quantum dots (QDs) and Au nanoparticles (NPs), simultaneously dispersed in a polymer matrix. Coherent interactions between QDs and plasmonic Au NPs embedded in PDMS films have been demonstrated to lead to a relevant enhancement of the absorption cross-section of the QDs, remarkably modifying the optical response of the entire system. Optical and time resolved spectroscopy studies revealed an active gain-plasmon feedback behind the super-absorbing overall effect.


Langmuir | 2012

Polyelectrolyte multilayers as a platform for luminescent nanocrystal patterned assemblies.

Elisabetta Fanizza; Michele Altomare; A. Evelyn Di Mauro; Teresa Del Sole; Michela Corricelli; Nicoletta Depalo; Roberto Comparelli; A. Agostiano; Marinella Striccoli; M. Lucia Curri

The fabrication of uniform and patterned nanocrystal (NC) assemblies has been investigated by exploiting the possibility of carefully tailoring colloidal NC surface chemistry and the ability of polyelectrolyte (PE) to functionalize substrates through an electrostatic layer-by-layer (LbL) strategy. Appropriate deposition conditions, substrate functionalization, and post-preparative treatments were selected to tailor the substrate surface chemistry to effectively direct the homogeneous electrostatic-induced assembly of NCs. Water-dispersible luminescent NCs, namely, (CdSe)ZnS and CdS, were differently functionalized by (1) ligand-exchange reaction, (2) growth of a hydrophilic silica shell, and (3) formation of a hydrophilic inclusion complex, thus providing functional NCs stable in a defined pH range. The electrostatically charged functional NCs represent a comprehensive selection of examples of surface-functionalized NCs, which enables the systematic investigation of experimental parameters in NC assembly processes carried out by combining LbL procedures with microcontact printing and also exploiting NC emission, relevant for potential applications, as a prompt and effective probe for evaluating assembly quality. Thus, an ample showcase of combinations has been investigated, and the spectroscopic and morphological features of the resulting NC-based structures have been discussed.


Nano Research | 2017

Sorafenib delivery nanoplatform based on superparamagnetic iron oxide nanoparticles magnetically targets hepatocellular carcinoma

Nicoletta Depalo; Rosa Maria Iacobazzi; Gianpiero Valente; Ilaria Arduino; Silvia Villa; Fabio Canepa; Valentino Laquintana; Elisabetta Fanizza; Marinella Striccoli; Annalisa Cutrignelli; Angela Lopedota; Letizia Porcelli; Amalia Azzariti; Massimo Franco; M. L. Curri; Nunzio Denora

Currently, sorafenib is the only systemic therapy capable of increasing overall survival of hepatocellular carcinoma patients. Unfortunately, its side effects, particularly its overall toxicity, limit the therapeutic response that can be achieved. Superparamagnetic iron oxide nanoparticles (SPIONs) are very attractive for drug delivery because they can be targeted to specific sites in the body through application of a magnetic field, thus improving intratumoral accumulation and reducing adverse effects. Here, nanoformulations based on polyethylene glycol modified phospholipid micelles, loaded with both SPIONs and sorafenib, were successfully prepared and thoroughly investigated by complementary techniques. This nanovector system provided effective drug delivery, had an average hydrodynamic diameter of about 125 nm, had good stability in aqueous medium, and allowed controlled drug loading. Magnetic analysis allowed accurate determination of the amount of SPIONs embedded in each micelle. An in vitro system was designed to test whether the SPION micelles can be efficiently held using a magnetic field under typical flow conditions found in the human liver. Human hepatocellular carcinoma (HepG2) cells were selected as an in vitro system to evaluate tumor cell targeting efficacy of the superparamagnetic micelles loaded with sorafenib. These experiments demonstrated that this delivery platform is able to enhance sorafenib’s antitumor effectiveness by magnetic targeting. The magnetic nanovectors described here represent promising candidates for targeting specific hepatic tumor sites, where selective release of sorafenib can improve its efficacy and safety profile.


Science and Technology of Advanced Materials | 2016

Fabrication of photoactive heterostructures based on quantum dots decorated with Au nanoparticles

Elisabetta Fanizza; Carmine Urso; R. Maria Iacobazzi; Nicoletta Depalo; Michela Corricelli; Annamaria Panniello; Angela Agostiano; Nunzio Denora; Valentino Laquintana; Marinella Striccoli; M. Lucia Curri

Abstract Silica based multifunctional heterostructures, exhibiting near infrared (NIR) absorption (650–1200 nm) and luminescence in the visible region, represent innovative nanosystems useful for diagnostic or theranostic applications. Herein, colloidal synthetic procedures are applied to design a photoactive multifunctional nanosystem. Luminescent silica (SiO2) coated quantum dots (QDs) have been used as versatile nanoplatforms to assemble on their surface gold (Au) seeds, further grown into Au spackled structures. The synthesized nanostructures combine the QD emission in the visible region, and, concomitantly, the distinctive NIR absorption of Au nanodomains. The possibility of having multiple QDs in a single heterostructure, the SiO2 shell thickness, and the extent of Au deposition onto SiO2 surface have been carefully controlled. The work shows that a single QD entrapped in 16 nm thick SiO2 shell, coated with Au speckles, represents the most suitable geometry to preserve the QD emission in the visible region and to generate NIR absorption from metal NPs. The resulting architectures present a biomedical potential as an effective optical multimodal probes and as promising therapeutic agents due to the Au NP mediated photothermal effect.

Collaboration


Dive into the Nicoletta Depalo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge