Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicoletta Kessaris is active.

Publication


Featured researches published by Nicoletta Kessaris.


Journal of Clinical Investigation | 2011

Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury

Catia Laranjeira; Katarina Sandgren; Nicoletta Kessaris; William D. Richardson; Alexandre J. Potocnik; Pieter Vanden Berghe; Vassilis Pachnis

The enteric nervous system (ENS) in mammals forms from neural crest cells during embryogenesis and early postnatal life. Nevertheless, multipotent progenitors of the ENS can be identified in the adult intestine using clonal cultures and in vivo transplantation assays. The identity of these neurogenic precursors in the adult gut and their relationship to the embryonic progenitors of the ENS are currently unknown. Using genetic fate mapping, we here demonstrate that mouse neural crest cells marked by SRY box-containing gene 10 (Sox10) generate the neuronal and glial lineages of enteric ganglia. Most neurons originated from progenitors residing in the gut during mid-gestation. Afterward, enteric neurogenesis was reduced, and it ceased between 1 and 3 months of postnatal life. Sox10-expressing cells present in the myenteric plexus of adult mice expressed glial markers, and we found no evidence that these cells participated in neurogenesis under steady-state conditions. However, they retained neurogenic potential, as they were capable of generating neurons with characteristics of enteric neurons in culture. Furthermore, enteric glia gave rise to neurons in vivo in response to chemical injury to the enteric ganglia. Our results indicate that despite the absence of constitutive neurogenesis in the adult gut, enteric glia maintain limited neurogenic potential, which can be activated by tissue dissociation or injury.


Nature Neuroscience | 2006

Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage.

Nicoletta Kessaris; Matthew Fogarty; Palma Iannarelli; Matthew Grist; Michael Wegner; William D. Richardson

The developmental origin of oligodendrocyte progenitors (OLPs) in the forebrain has been controversial. We now show, by Cre-lox fate mapping in transgenic mice, that the first OLPs originate in the medial ganglionic eminence (MGE) and anterior entopeduncular area (AEP) in the ventral forebrain. From there, they populate the entire embryonic telencephalon including the cerebral cortex before being joined by a second wave of OLPs from the lateral and/or caudal ganglionic eminences (LGE and CGE). Finally, a third wave arises within the postnatal cortex. When any one population is destroyed at source by the targeted expression of diphtheria toxin, the remaining cells take over and the mice survive and behave normally, with a normal complement of oligodendrocytes and myelin. Thus, functionally redundant populations of OLPs compete for space in the developing brain. Notably, the embryonic MGE- and AEP-derived population is eliminated during postnatal life, raising questions about the nature and purpose of the competition.


Nature Neuroscience | 2008

PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice

Leanne E. Rivers; Kaylene M. Young; Matteo Rizzi; Françoise Jamen; Konstantina Psachoulia; Anna Wade; Nicoletta Kessaris; William D. Richardson

Platelet-derived growth factor α receptor (PDGFRA)/NG2–expressing glia are distributed throughout the adult CNS. They are descended from oligodendrocyte precursors (OLPs) in the perinatal CNS, but it is not clear whether they continue to generate myelinating oligodendrocytes or other differentiated cells during normal adult life. We followed the fates of adult OLPs in Pdgfra-creERT2/Rosa26-YFP double-transgenic mice and found that they generated many myelinating oligodendrocytes during adulthood; >20% of all oligodendrocytes in the adult mouse corpus callosum were generated after 7 weeks of age, raising questions about the function of the late-myelinating axons. OLPs also produced some myelinating cells in the cortex, but the majority of adult-born cortical cells did not appear to myelinate. We found no evidence for astrocyte production in gray or white matter. However, small numbers of projection neurons were generated in the forebrain, especially in the piriform cortex, which is the main target of the olfactory bulb.


Nature | 2005

Neural crest origins of the neck and shoulder

Toshiyuki Matsuoka; Per Ahlberg; Nicoletta Kessaris; Palma Iannarelli; Ulla Dennehy; William D. Richardson; Andrew P. McMahon; Georgy Koentges

The neck and shoulder region of vertebrates has undergone a complex evolutionary history. To identify its underlying mechanisms we map the destinations of embryonic neural crest and mesodermal stem cells using Cre-recombinase-mediated transgenesis. The single-cell resolution of this genetic labelling reveals cryptic cell boundaries traversing the seemingly homogeneous skeleton of the neck and shoulders. Within this assembly of bones and muscles we discern a precise code of connectivity that mesenchymal stem cells of both neural crest and mesodermal origin obey as they form muscle scaffolds. The neural crest anchors the head onto the anterior lining of the shoulder girdle, while a Hox-gene-controlled mesoderm links trunk muscles to the posterior neck and shoulder skeleton. The skeleton that we identify as neural crest-derived is specifically affected in human Klippel–Feil syndrome, Sprengels deformity and Arnold–Chiari I/II malformation, providing insights into their likely aetiology. We identify genes involved in the cellular modularity of the neck and shoulder skeleton and propose a new method for determining skeletal homologies that is based on muscle attachments. This has allowed us to trace the whereabouts of the cleithrum, the major shoulder bone of extinct land vertebrate ancestors, which seems to survive as the scapular spine in living mammals.


Cell Stem Cell | 2010

CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination.

Malgorzata Zawadzka; Leanne E. Rivers; Stephen P.J. Fancy; Chao Zhao; Richa B. Tripathi; Françoise Jamen; Kaylene M. Young; Alexander Goncharevich; Hartmut Pohl; Matteo Rizzi; David H. Rowitch; Nicoletta Kessaris; Ueli Suter; William D. Richardson; Robin J.M. Franklin

After central nervous system (CNS) demyelination-such as occurs during multiple sclerosis-there is often spontaneous regeneration of myelin sheaths, mainly by oligodendrocytes but also by Schwann cells. The origins of the remyelinating cells have not previously been established. We have used Cre-lox fate mapping in transgenic mice to show that PDGFRA/NG2-expressing glia, a distributed population of stem/progenitor cells in the adult CNS, produce the remyelinating oligodendrocytes and almost all of the Schwann cells in chemically induced demyelinated lesions. In contrast, the great majority of reactive astrocytes in the vicinity of the lesions are derived from preexisting FGFR3-expressing cells, likely to be astrocytes. These data resolve a long-running debate about the origins of the main players in CNS remyelination and reveal a surprising capacity of CNS precursors to generate Schwann cells, which normally develop from the embryonic neural crest and are restricted to the peripheral nervous system.


The Journal of Neuroscience | 2007

Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex.

Matthew J. Fogarty; Matthew Grist; Diego M. Gelman; Oscar Marín; Vassilis Pachnis; Nicoletta Kessaris

Cortical pyramidal cells are generated from pallial neuroepithelial precursors, whereas GABAergic interneurons originate in subpallial germinal zones and migrate tangentially to reach the cortex. Using Cre–lox technology in transgenic mice and a series of molecular markers that subdivide the subpallial neuroepithelium into small domains, we fate-map precursor pools and identify interneurons generated from each domain. Cortical interneurons expressing calbindin, parvalbumin, and somatostatin are generated exclusively from Lhx6 (Lim homeobox 6)-expressing precursors in the medial ganglionic eminence (MGE). Martinotti cells that coexpress calretinin and somatostatin are generated from the dorsal region of the MGE neuroepithelium that expresses Nkx6.2 (NK2 transcription factor-related 6.2). Most neuropeptide Y-expressing cells and all bipolar calretinin-expressing interneurons are generated outside the MGE, from the germinal zones of the lateral/caudal ganglionic eminences that express Gsh2 (genomic screened homeobox 2). Our data demonstrate that subpallial neuroepithelial domains defined by expression of genetic determinants generate distinct interneuron subtypes, thereby contributing to the generation of cortical interneuron heterogeneity observed in the adult cortex.


The Journal of Neuroscience | 2007

Subventricular Zone Stem Cells Are Heterogeneous with Respect to Their Embryonic Origins and Neurogenic Fates in the Adult Olfactory Bulb

Kaylene M. Young; Matthew J. Fogarty; Nicoletta Kessaris; William D. Richardson

We determined the embryonic origins of adult forebrain subventricular zone (SVZ) stem cells by Cre-lox fate mapping in transgenic mice. We found that all parts of the telencephalic neuroepithelium, including the medial ganglionic eminence and lateral ganglionic eminence (LGE) and the cerebral cortex, contribute multipotent, self-renewing stem cells to the adult SVZ. Descendants of the embryonic LGE and cortex settle in ventral and dorsal aspects of the dorsolateral SVZ, respectively. Both populations contribute new (5-bromo-2′-deoxyuridine-labeled) tyrosine hydroxylase- and calretinin-positive interneurons to the adult olfactory bulb. However, calbindin-positive interneurons in the olfactory glomeruli were generated exclusively by LGE-derived stem cells. Thus, different SVZ stem cells have different embryonic origins, colonize different parts of the SVZ, and generate different neuronal progeny, suggesting that some aspects of embryonic patterning are preserved in the adult SVZ. This could have important implications for the design of endogenous stem cell-based therapies in the future.


Proceedings of the National Academy of Sciences of the United States of America | 2008

ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear

Fabio Anselmi; Victor H. Hernandez; Giulia Crispino; Anke Seydel; Saida Ortolano; Stephen D. Roper; Nicoletta Kessaris; William D. Richardson; Gesa Rickheit; Mikhail A. Filippov; Hannah Monyer; Fabio Mammano

Extracellular ATP controls various signaling systems including propagation of intercellular Ca2+ signals (ICS). Connexin hemichannels, P2x7 receptors (P2x7Rs), pannexin channels, anion channels, vesicles, and transporters are putative conduits for ATP release, but their involvement in ICS remains controversial. We investigated ICS in cochlear organotypic cultures, in which ATP acts as an IP3-generating agonist and evokes Ca2+ responses that have been linked to noise-induced hearing loss and development of hair cell-afferent synapses. Focal delivery of ATP or photostimulation with caged IP3 elicited Ca2+ responses that spread radially to several orders of unstimulated cells. Furthermore, we recorded robust Ca2+ signals from an ATP biosensor apposed to supporting cells outside the photostimulated area in WT cultures. ICS propagated normally in cultures lacking either P2x7R or pannexin-1 (Px1), as well as in WT cultures exposed to blockers of anion channels. By contrast, Ca2+ responses failed to propagate in cultures with defective expression of connexin 26 (Cx26) or Cx30. A companion paper demonstrates that, if expression of either Cx26 or Cx30 is blocked, expression of the other is markedly down-regulated in the outer sulcus. Lanthanum, a connexin hemichannel blocker that does not affect gap junction (GJ) channels when applied extracellularly, limited the propagation of Ca2+ responses to cells adjacent to the photostimulated area. Our results demonstrate that these connexins play a dual crucial role in inner ear Ca2+ signaling: as hemichannels, they promote ATP release, sustaining long-range ICS propagation; as GJ channels, they allow diffusion of Ca2+-mobilizing second messengers across coupled cells.


Science | 2012

Regional Astrocyte Allocation Regulates CNS Synaptogenesis and Repair

Hui-Hsin Tsai; Huiliang Li; Luis C. Fuentealba; Anna V. Molofsky; Raquel Taveira-Marques; Helin Zhuang; April Tenney; Alice T. Murnen; Stephen P.J. Fancy; Florian T. Merkle; Nicoletta Kessaris; Arturo Alvarez-Buylla; William D. Richardson; David H. Rowitch

Born to Stay Together For as many neurons as there are in the brain, there are many more astrocytes. These backstage workers perform a variety of functions, such as sustaining the blood-brain barrier and providing a stabilized environment for neurons. Diversity of astrocyte function is reflected in different molecular expression profiles. Tsai et al. (p. 358, published online 28 June) selectively labeled astrocytes that originated from different domains of the mouse spinal cord and found that not all astrocytes are created equal: Neighborhoods of astrocytes were defined by shared birthplaces. In the mouse brain, astrocytes are not as interchangeable as previously thought. Astrocytes, the most abundant cell population in the central nervous system (CNS), are essential for normal neurological function. We show that astrocytes are allocated to spatial domains in mouse spinal cord and brain in accordance with their embryonic sites of origin in the ventricular zone. These domains remain stable throughout life without evidence of secondary tangential migration, even after acute CNS injury. Domain-specific depletion of astrocytes in ventral spinal cord resulted in abnormal motor neuron synaptogenesis, which was not rescued by immigration of astrocytes from adjoining regions. Our findings demonstrate that region-restricted astrocyte allocation is a general CNS phenomenon and reveal intrinsic limitations of the astroglial response to injury.


The Journal of Neuroscience | 2009

The Embryonic Preoptic Area Is a Novel Source of Cortical GABAergic Interneurons

Diego M. Gelman; Francisco J. Martini; Sandrina Nóbrega-Pereira; Alessandra Pierani; Nicoletta Kessaris; Oscar Marín

GABA-containing (GABAergic) interneurons play an important role in the function of the cerebral cortex. Through mostly inhibitory mechanisms, interneurons control hyperexcitability and synchronize and shape the spatiotemporal dynamics of cortical activity underlying various brain functions. Studies over the past 10 years have demonstrated that, in most mammals, interneurons originate during development from the subcortical telencephalon—the subpallium—and reach the cerebral cortex through tangential migration. Until now, interneurons have been demonstrated to derive exclusively from two subpallial regions, the medial ganglionic eminence and the caudal ganglionic eminence. Here, we show that another subpallial structure, the preoptic area, is a novel source of cortical GABAergic interneurons in the mouse. In utero labeling and genetic lineage-tracing experiments demonstrate that neurons born in this region migrate to the neocortex and hippocampus, where they differentiate into a distinct population of GABAergic interneurons with relatively uniform neurochemical, morphological, and electrophysiological properties.

Collaboration


Dive into the Nicoletta Kessaris's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorenza Magno

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Fogarty

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Wegner

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danny Huylebroeck

Laboratory of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge