Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicoletta Schintu is active.

Publication


Featured researches published by Nicoletta Schintu.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Transcription factor Nurr1 maintains fiber integrity and nuclear-encoded mitochondrial gene expression in dopamine neurons

Banafsheh Kadkhodaei; Alexandra Alvarsson; Nicoletta Schintu; Daniel Ramsköld; Nikolaos Volakakis; Eliza Joodmardi; Takashi Yoshitake; Jan Kehr; Mickael Decressac; Anders Björklund; Rickard Sandberg; Per Svenningsson; Thomas Perlmann

Developmental transcription factors important in early neuron specification and differentiation often remain expressed in the adult brain. However, how these transcription factors function to mantain appropriate neuronal identities in adult neurons and how transcription factor dysregulation may contribute to disease remain largely unknown. The transcription factor Nurr1 has been associated with Parkinsons disease and is essential for the development of ventral midbrain dopamine (DA) neurons. We used conditional Nurr1 gene-targeted mice in which Nurr1 is ablated selectively in mature DA neurons by treatment with tamoxifen. We show that Nurr1 ablation results in a progressive pathology associated with reduced striatal DA, impaired motor behaviors, and dystrophic axons and dendrites. We used laser-microdissected DA neurons for RNA extraction and next-generation mRNA sequencing to identify Nurr1-regulated genes. This analysis revealed that Nurr1 functions mainly in transcriptional activation to regulate a battery of genes expressed in DA neurons. Importantly, nuclear-encoded mitochondrial genes were identified as the major functional category of Nurr1-regulated target genes. These studies indicate that Nurr1 has a key function in sustaining high respiratory function in these cells, and that Nurr1 ablation in mice recapitulates early features of Parkinsons disease.


Nature Neuroscience | 2015

Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson's disease

Ariadna Laguna; Nicoletta Schintu; André Nobre; Alexandra Alvarsson; Nikolaos Volakakis; Jesper Kjaer Jacobsen; Marta Gómez-Galán; Elena Sopova; Eliza Joodmardi; Takashi Yoshitake; Qiaolin Deng; Jan Kehr; Johan Ericson; Per Svenningsson; Oleg Shupliakov; Thomas Perlmann

The role of developmental transcription factors in maintenance of neuronal properties and in disease remains poorly understood. Lmx1a and Lmx1b are key transcription factors required for the early specification of ventral midbrain dopamine (mDA) neurons. Here we show that conditional ablation of Lmx1a and Lmx1b after mDA neuron specification resulted in abnormalities that show striking resemblance to early cellular abnormalities seen in Parkinsons disease. We found that Lmx1b was required for the normal execution of the autophagic-lysosomal pathway and for the integrity of dopaminergic nerve terminals and long-term mDA neuronal survival. Notably, human LMX1B expression was decreased in mDA neurons in brain tissue affected by Parkinsons disease. Thus, these results reveal a sustained and essential requirement of Lmx1b for the function of midbrain mDA neurons and suggest that its dysfunction is associated with Parkinsons disease pathogenesis.


Analytical Chemistry | 2012

Controlled-pH Tissue Cleanup Protocol for Signal Enhancement of Small Molecule Drugs Analyzed by MALDI-MS Imaging

Mohammadreza Shariatgorji; Patrik Källback; Lena Gustavsson; Nicoletta Schintu; Per Svenningsson; Richard J. A. Goodwin; Per E. Andrén

The limit of detection of low-molecular weight compounds in tissue sections, analyzed by matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), was significantly improved by employing sample washing using a pH-controlled buffer solution. The pH of the washing solutions were set at values whereby the target analytes would have low solubility. Washing the tissue sections in the buffered solution resulted in removal of endogenous soluble ionization-suppressing compounds and salts, while the target compound remained in situ with minor or no delocalization during the buffered washing procedure. Two pharmaceutical compounds (cimetidine and imipramine) and one new protease inhibitor compound were successfully used to evaluate the feasibility of the pH-controlled tissue washing protocol for MALDI-MSI. Enhancement in signal-to-noise ratio was achieved by a factor of up to 10.


Analytical Chemistry | 2012

Deuterated Matrix-Assisted Laser Desorption Ionization Matrix Uncovers Masked Mass Spectrometry Imaging Signals of Small Molecules

Mohammadreza Shariatgorji; Anna Nilsson; Richard J. A. Goodwin; Per Svenningsson; Nicoletta Schintu; Zoltan Banka; Laszlo Kladni; Tibor Hasko; Andras Szabo; Per E. Andrén

D(4)-α-Cyano-4-hydroxycinnamic acid (D(4)-CHCA) has been synthesized for use as a matrix for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) and MALDI-MS imaging (MSI) of small molecule drugs and endogenous compounds. MALDI-MS analysis of small molecules has historically been hindered by interference from matrix ion clusters and fragment peaks that mask signals of low molecular weight compounds of interest. By using D(4)-CHCA, the cluster and fragment peaks of CHCA, the most common matrix for analysis of small molecules, are shifted by + 4, + 8 and + 12 Da, which expose signals across areas of the previously concealed low mass range. Here, obscured MALDI-MS signals of a synthetic small molecule pharmaceutical, a naturally occurring isoquinoline alkaloid, and endogenous compounds including the neurotransmitter acetylcholine have been unmasked and imaged directly from biological tissue sections.


The Journal of Neuroscience | 2015

Modulation by Trace Amine-Associated Receptor 1 of Experimental Parkinsonism, l-DOPA Responsivity, and Glutamatergic Neurotransmission.

Alexandra Alvarsson; Xiaoqun Zhang; Tiberiu Loredan Stan; Nicoletta Schintu; Banafsheh Kadkhodaei; Mark J. Millan; Thomas Perlmann; Per Svenningsson

Parkinsons disease (PD) is a movement disorder characterized by a progressive loss of nigrostriatal dopaminergic neurons. Restoration of dopamine transmission by l-DOPA relieves symptoms of PD but causes dyskinesia. Trace Amine-Associated Receptor 1 (TAAR1) modulates dopaminergic transmission, but its role in experimental Parkinsonism and l-DOPA responses has been neglected. Here, we report that TAAR1 knock-out (KO) mice show a reduced loss of dopaminergic markers in response to intrastriatal 6-OHDA administration compared with wild-type (WT) littermates. In contrast, the TAAR1 agonist RO5166017 aggravated degeneration induced by intrastriatal 6-OHDA in WT mice. Subchronic l-DOPA treatment of TAAR1 KO mice unilaterally lesioned with 6-OHDA in the medial forebrain bundle resulted in more pronounced rotational behavior and dyskinesia than in their WT counterparts. The enhanced behavioral sensitization to l-DOPA in TAAR1 KO mice was paralleled by increased phosphorylation of striatal GluA1 subunits of AMPA receptors. Conversely, RO5166017 counteracted both l-DOPA-induced rotation and dyskinesia as well as AMPA receptor phosphorylation. Underpinning a role for TAAR1 receptors in modulating glutamate neurotransmission, intrastriatal application of RO5166017 prevented the increase of evoked corticostriatal glutamate release provoked by dopamine deficiency after 6-OHDA-lesions or conditional KO of Nurr1. Finally, inhibition of corticostriatal glutamate release by TAAR1 showed mechanistic similarities to that effected by activation of dopamine D2 receptors. These data unveil a role for TAAR1 in modulating the degeneration of dopaminergic neurons, the behavioral response to l-DOPA, and presynaptic and postsynaptic glutamate neurotransmission in the striatum, supporting their relevance to the pathophysiology and, potentially, management of PD. SIGNIFICANCE STATEMENT Parkinsons disease (PD) is characterized by a progressive loss of nigrostriatal dopaminergic neurons. Restoration of dopamine transmission by l-DOPA relieves symptoms of PD but causes severe side effects. Trace Amine-Associated Receptor 1 (TAAR1) modulates dopaminergic transmission, but its role in PD and l-DOPA responses has been neglected. Here, we report that TAAR1 potentiates the degeneration of dopaminergic neurons and attenuates the behavioral response to l-DOPA and presynaptic and postsynaptic glutamate neurotransmission in the striatum, supporting the relevance of TAAR1 to the pathophysiology and, potentially, management of PD.


European Neuropsychopharmacology | 2014

Effects of lithium and aripiprazole on brain stimulation reward and neuroplasticity markers in the limbic forebrain

Maria Mavrikaki; Nicoletta Schintu; Andreas Kastellakis; George G. Nomikos; Per Svenningsson; George Panagis

Bipolar disorder (BD) is a severe pathological condition with impaired reward-related processing. The present study was designed to assess the effects of two commonly used BD medications, the mood stabilizer lithium chloride (LiCl) and the atypical antipsychotic and antimanic agent aripiprazole, in an animal model of reward and motivation and on markers of neuroplasticity in the limbic forebrain in rats. We utilized intracranial self-simulation (ICSS) to assess the effects of acute and chronic administration of LiCl and aripiprazole on brain stimulation reward, and phosphorylation studies to determine their effects on specific cellular neuroplasticity markers, i.e., the phosphorylation of CREB and crucial phosphorylation sites on the GluA1 subunit of AMPA receptors and the NA1 and NA2B subunits of NMDA receptors, in the limbic forebrain. Chronic LiCl induced tolerance to the anhedonic effect of the drug observed after acute administration, while chronic aripiprazole induced a sustained anhedonic effect. These distinct behavioral responses might be related to differences in molecular markers of neuroplasticity. Accordingly, we demonstrated that chronic LiCl, but not aripiprazole, decreased phosphorylation of CREB at the Ser133 site and NA1 at the Ser896 site in the prefrontal cortex and GluA1 at the Ser831 site and NA2B at the Ser1303 site in the ventral striatum. The present study provides evidence for BD medication-evoked changes in reward and motivation processes and in specific markers of neuronal plasticity in the limbic forebrain, promoting the notion that these drugs may blunt dysregulated reward processes in BD by counteracting neuronal plasticity deficits.


The International Journal of Neuropsychopharmacology | 2014

Ropinirole regulates emotionality and neuronal activity markers in the limbic forebrain

Maria Mavrikaki; Nicoletta Schintu; George G. Nomikos; George Panagis; Per Svenningsson

Restless legs syndrome (RLS) and Parkinsons disease (PD) are movement disorders usually accompanied by emotional and cognitive deficits. Although D3/D2 receptor agonists are effective against motor and non-motor deficits in RLS and PD, the exact behavioral and neurochemical effects of these drugs are not clearly defined. This study aimed to evaluate the effects of acute ropinirole (0, 0.1, 1 or 10 mg/kg, i.p.), a preferential D3/D2 receptor agonist, on intracranial self-stimulation (ICSS), spontaneous motor activity, anxiety- and depression-like behaviors, spatial reference and working memory in rats as well as on certain markers of neuronal activity, i.e. induction of immediate early genes, such as c-fos and arc, and crucial phosphorylations on GluA1 subunit of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and NA1, NA2A and NA2B subunits of N-methyl-D-aspartate (NMDA) receptors. Ropinirole decreased ICSS thresholds and induced anxiolytic- and antidepressive-like effects without affecting motor activity or spatial memory. The effects on emotionality were associated with a decrease in p-Ser897-NA1 and an increase in p-Tyr1472-NA2B in the ventral striatum as well as an increased induction of c-fos messenger RNA (mRNA) in the prefrontal cortex (PFC) and decreased expression of arc mRNA in the striatum and the shell of the nucleus accumbens. Our data indicate that ropinirole significantly affects emotionality at doses (1-10 mg/kg, i.p.) that exert no robust effects on locomotion or cognition. The data reinforce the use of D3/D2 receptor agonists in the treatment of RLS and PD patients characterized by emotional deficits and suggest that altered NMDA-mediated neurotransmission in the limbic forebrain may underlie some of ropiniroles therapeutic actions.


Journal of Parkinson's disease | 2012

Studies of depression-related states in animal models of Parkinsonism.

Nicoletta Schintu; Xiaoqun Zhang; Per Svenningsson

The diagnosis of Parkinsons disease (PD) is solely based on movement disorders, but several non-motor deficits are common in PD. Depression often precedes the movement dysfunctions and continues to be a major concern during all stages of the disease. The pathophysiology of parkinsonian depression is largely unknown, but appears to partly differ from depression in patients without PD. Because of the increased awareness of the negative impact of depression on the quality of life of PD patients, there is a growing interest in developing animal models of parkinsonism that also recapitulate the depressive-like symptomatology. This review introduces paradigms for measurement of depression-like behaviors in rodents and summarizes data on behavioral, neurochemical and pharmacological changes in experimental PD models with relevance for depression-related states.


Proceedings of the National Academy of Sciences of the United States of America | 2016

p11 modulates L-DOPA therapeutic effects and dyskinesia via distinct cell types in experimental Parkinsonism

Nicoletta Schintu; Xiaoqun Zhang; Alexandra Alvarsson; Roberta Marongiu; Michael G. Kaplitt; Paul Greengard; Per Svenningsson

Significance Parkinson’s disease (PD) is symptomatically treated with levodopa (L-DOPA), but this treatment often results in disabling dyskinesias. Subchronic L-DOPA increases striatal levels of adaptor protein, p11. Using experimental mouse models of Parkinsonism, we report here that global p11 knockout mice show reduced therapeutic responses to L-DOPA on rotational motor sensitization, but also develop less L-DOPA–induced dyskinesias. Mice lacking p11 in dopamine D2R-containing neurons have reduced response to L-DOPA on the therapeutic parameters, but develop dyskinetic side effects. In contrast, mice lacking p11 in dopamine D1R-containing neurons exhibit rotational responses toward L-DOPA, but develop less dyskinesia. These results imply that reductions of p11 in D1R-containing cells may be a viable therapy against L-DOPA–induced dyskinesias. The reduced movement repertoire of Parkinson’s disease (PD) is mainly due to degeneration of nigrostriatal dopamine neurons. Restoration of dopamine transmission by levodopa (L-DOPA) relieves motor symptoms of PD but often causes disabling dyskinesias. Subchronic L-DOPA increases levels of adaptor protein p11 (S100A10) in dopaminoceptive neurons of the striatum. Using experimental mouse models of Parkinsonism, we report here that global p11 knockout (KO) mice develop fewer jaw tremors in response to tacrine. Following L-DOPA, global p11KO mice show reduced therapeutic responses on rotational motor sensitization, but also develop less dyskinetic side effects. Studies using conditional p11KO mice reveal that distinct cell populations mediate these therapeutic and side effects. Selective deletion of p11 in cholinergic acetyltransferase (ChAT) neurons reduces tacrine-induced tremor. Mice lacking p11 in dopamine D2R-containing neurons have a reduced response to L-DOPA on the therapeutic parameters, but develop dyskinetic side effects. In contrast, mice lacking p11 in dopamine D1R-containing neurons exhibit tremor and rotational responses toward L-DOPA, but develop less dyskinesia. Moreover, coadministration of rapamycin with L-DOPA counteracts L-DOPA–induced dyskinesias in wild-type mice, but not in mice lacking p11 in D1R-containing neurons. 6-OHDA lesioning causes an increase of evoked striatal glutamate release in wild type, but not in global p11KO mice, indicating that altered glutamate neurotransmission could contribute to the reduced L-DOPA responsivity. These data demonstrate that p11 located in ChAT or D2R-containing neurons is involved in regulating therapeutic actions in experimental PD, whereas p11 in D1R-containing neurons underlies the development of L-DOPA–induced dyskinesias.


The Journal of Comparative Neurology | 2017

Cell- and region-specific expression of depression-related protein p11 (S100a10) in the brain.

Ana Milosevic; Thomas Liebmann; Margarete Knudsen; Nicoletta Schintu; Per Svenningsson; Paul Greengard

P11 (S100a10), a member of the S100 family of proteins, has widespread distribution in the vertebrate body, including in the brain, where it has a key role in membrane trafficking, vesicle secretion, and endocytosis. Recently, our laboratory has shown that a constitutive knockout of p11 (p11‐KO) in mice results in a depressive‐like phenotype. Furthermore, p11 has been implicated in major depressive disorder (MDD) and in the actions of antidepressants. Since depression affects multiple brain regions, and the role of p11 has only been determined in a few of these areas, a detailed analysis of p11 expression in the brain is warranted. Here we demonstrate that, although widespread in the brain, p11 expression is restricted to distinct regions, and specific neuronal and nonneuronal cell types. Furthermore, we provide comprehensive mapping of p11 expression using in situ hybridization, immunocytochemistry, and whole‐tissue volume imaging. Overall, expression spans multiple brain regions, structures, and cell types, suggesting a complex role of p11 in depression. J. Comp. Neurol. 525:955–975, 2017.

Collaboration


Dive into the Nicoletta Schintu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra Alvarsson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Thomas Perlmann

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Kehr

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge