Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolle H. Packer is active.

Publication


Featured researches published by Nicolle H. Packer.


FEBS Journal | 2010

Mucin-type O-glycosylation--putting the pieces together.

Pia Hønnerup Jensen; Daniel Kolarich; Nicolle H. Packer

The O‐glycosylation of Ser and Thr by N‐acetylgalactosamine‐linked (mucin‐type) oligosaccharides is often overlooked in protein analysis. Three characteristics make O‐linked glycosylation more difficult to analyse than N‐linked glycosylation, namely: (a) no amino acid consensus sequence is known; (b) there is no universal enzyme for the release of O‐glycans from the protein backbone; and (c) the density and number of occupied sites may be very high. For significant biological conclusions to be drawn, the complete picture of O‐linked glycosylation on a protein needs to be determined. This review specifically addresses the analytical approaches that have been used, and the challenges remaining, in the characterization of both the composition and structure of mucin‐type O‐glycans, and the determination of the occupancy and heterogeneity at each amino acid attachment site.


Glycobiology | 2008

Protein glycosylation pathways in filamentous fungi

Nandan Deshpande; Marc R. Wilkins; Nicolle H. Packer; Helena Nevalainen

Glycosylation of proteins is important for protein stability, secretion, and localization. In this study, we have investigated the glycan synthesis pathways of 12 filamentous fungi including those of medical/agricultural/industrial importance for which genomes have been recently sequenced. We have adopted a systems biology approach to combine the results from comparative genomics techniques with high confidence information on the enzymes and fungal glycan structures, reported in the literature. From this, we have developed a composite representation of the glycan synthesis pathways in filamentous fungi (both N- and O-linked). The N-glycosylation pathway in the cytoplasm and endoplasmic reticulum was found to be highly conserved evolutionarily across all the filamentous fungi considered in the study. In the final stages of N-glycan synthesis in the Golgi, filamentous fungi follow the high mannose pathway as in Saccharomyces cerevisiae, but the level of glycan mannosylation is reduced. Highly specialized N-glycan structures with galactofuranose residues, phosphodiesters, and other insufficiently trimmed structures have also been identified in the filamentous fungi. O-Linked glycosylation in filamentous fungi was seen to be highly conserved with many mannosyltransferases that are similar to those in S. cerevisiae. However, highly variable and diverse O-linked glycans also exist. We have developed a web resource for presenting the compiled data with user-friendly query options, which can be accessed at www.fungalglycans.org. This resource can assist attempts to remodel glycosylation of recombinant proteins expressed in filamentous fungal hosts.


Nucleic Acids Research | 2003

GlycoSuiteDB: a curated relational database of glycoprotein glycan structures and their biological sources. 2003 update

Catherine A. Cooper; Hiren Joshi; Mathew J. Harrison; Marc R. Wilkins; Nicolle H. Packer

GlycoSuiteDB is an annotated and curated relational database of glycan structures reported in the literature. It contains information on the glycan type, core type, linkages and anomeric configurations, mass, composition and the analytical methods used by the researchers to determine the glycan structure. Native and recombinant sources are detailed, including species, tissue and/or cell type, cell line, strain, life stage, disease, and if known the protein to which the glycan structures are attached. There are links to SWISS-PROT/TrEMBL and PubMed where applicable. Recent developments include the implementation of searching by 2D structure and substructure, disease and reference. The database is updated twice a year, and now contains over 7650 entries. Access to GlycoSuiteDB is available at http://www.glycosuite.com.


Biochemical Journal | 2002

Identification of two highly sialylated human tear-fluid DMBT1 isoforms: The major high-molecular-mass glycoproteins in human tears

Benjamin L. Schulz; David Oxley; Nicolle H. Packer; Niclas G. Karlsson

Human open eye tear fluid was separated by low-percentage SDS/PAGE to detect high-molecular-mass protein components. Two bands were found with apparent molecular masses of 330 and 270 kDa respectively. By peptide-mass fingerprinting after tryptic digestion, the proteins were found to be isoforms of the DMBT1 gene product, with over 30% of the predicted protein covered by the tryptic peptides. By using gradient SDS/agarose/polyacrylamide composite gel electrophoresis and staining for glycosylation, it was shown that the two isoforms were the major high-molecular-mass glycoproteins of >200 kDa in human tear fluid. Western blotting showed that the proteins expressed sialyl-Le(a). After the release of oligosaccharides by reductive beta-elimination from protein blotted on to PVDF membrane, it was revealed by liquid chromatography-MS that the O-linked oligosaccharides were comprised mainly of highly sialylated oligosaccharides with up to 16 monosaccharide units. A majority of the oligosaccharides could be described by the formula dHex(0-->2)NeuAc(1-->)(x)Hex(x)HexNAc(x)(-ol), x=1-6, where Hex stands for hexose, dHex for deoxyhexose, HexNAc for N-acetylhexosamine and NeuAc for N-acetylneuraminate. The number of sialic acids in the formula is less than 5. Interpretation of collision-induced fragmentation tandem MS confirmed the presence of sialic acid and suggested the presence of previously undescribed structures carrying the sialyl-Le(a) epitopes. Small amounts of neutral and sulphated species were also present. This is the first time that O-linked oligosaccharides have been detected and described from protein variant of the DMBT1 gene.


Journal of Proteome Research | 2008

Glycoproteomics of milk: Differences in sugar epitopes on human and bovine milk fat globule membranes

Nicole L. Wilson; Leanne J. Robinson; Anne Donnet; Lionel Bovetto; Nicolle H. Packer; Niclas G. Karlsson

Oligosaccharides from human and bovine milk fat globule membranes were analyzed by LC-MS and LC-MS/MS. Global release of N-linked and O-linked oligosaccharides showed both to be highly sialylated, with bovine peak-lactating milk O-linked oligosaccharides presenting as mono- and disialylated core 1 oligosaccharides (Galbeta1-3GalNAcol), while human milk had core type 2 oligosaccharides (Galbeta1-3(GlcNAcbeta1-6)GalNAcol) with sialylation on the C-3 branch. The C-6 branch of these structures was extended with branched and unbranched N-acetyllactosamine units terminating in blood group H and Lewis type epitopes. These epitopes were also presented on the reducing terminus of the human, but not the bovine, N-linked oligosaccharides. The O-linked structures were found to be attached to the high molecular mass mucins isolated by agarose-polyacrylamide composite gel electrophoresis, where MUC1 and MUC4 were present. Analysis of bovine colostrum showed that O-linked core 2 oligosaccharides are present at the early stage (3 days after birth) but are down-regulated as lactation develops. This data indicates that human milk may provide different innate immune protection against pathogens compared to bovine milk, as evidenced by the presence of Lewis b epitope, a target for the Helicobacter pylori bacteria, on human, but not bovine, milk fat globule membrane mucins. In addition, non-mucin-type O-linked fucosylated oligosaccharides were found (NeuAc-Gal-GlcNAc1-3Fuc-ol in bovine milk and Gal-GlcNAc1-3Fuc-ol in human milk). The O-linked fucose structure in human milk is the first to our knowledge to be found on high molecular mass mucin-type molecules.


Molecular & Cellular Proteomics | 2002

High Throughput Peptide Mass Fingerprinting and Protein Macroarray Analysis Using Chemical Printing Strategies

Andrew John Sloane; Janice L. Duff; Nicole L. Wilson; Parag S. Gandhi; Cameron J. Hill; Femia Hopwood; Paul E. Smith; Melissa L. Thomas; Robert A. Cole; Nicolle H. Packer; Edmond J. Breen; Patrick W. Cooley; David B. Wallace; Keith L. Williams; Andrew A. Gooley

We describe a chemical printer that uses piezoelectric pulsing for rapid, accurate, and non-contact microdispensing of fluid for proteomic analysis of immobilized protein macroarrays. We demonstrate protein digestion and peptide mass fingerprinting analysis of human plasma and platelet proteins direct from a membrane surface subsequent to defined microdispensing of trypsin and matrix solutions, hence bypassing multiple liquid-handling steps. Detection of low abundance, alkaline proteins from whole human platelet extracts has been highlighted. Membrane immobilization of protein permits archiving of samples pre-/post-analysis and provides a means for subanalysis using multiple chemistries. This study highlights the ability to increase sequence coverage for protein identification using multiple enzymes and to characterize N-glycosylation modifications using a combination of PNGase F and trypsin. We also demonstrate microdispensing of multiple serum samples in a quantitative microenzyme-linked immunosorbent assay format to rapidly screen protein macroarrays for pathogen-derived antigens. We anticipate the chemical printer will be a major component of proteomic platforms for high throughput protein identification and characterization with widespread applications in biomedical and diagnostic discovery.


Journal of Proteome Research | 2009

Rat liver membrane glycoproteome : enrichment by phase partitioning and glycoprotein capture

Albert Lee; Daniel Kolarich; Paul A. Haynes; Pia Hønnerup Jensen; Mark S. Baker; Nicolle H. Packer

Past proteomic studies of membrane proteins have often been hampered by the low abundance and relatively high hydrophobicity of these proteins. Proteins are often glycosylated, particularly on the extracellular surface of the plasma membrane, and this characteristic was targeted as an enrichment strategy for identifying membrane proteins. Here, we report a strategy for identifying the tissue membrane glycoproteome, which involves (1) Triton X-114 phase partitioning, (2) isolation of glycosylphosphatidylinositol (GPI)-anchored proteins, and (3) glycoprotein capture using lectin affinity or hydrazine chemistry. Surprisingly, the capture of membrane proteins by lectin affinity and hydrazine chemistry resulted in mostly different populations of enriched glycoproteins. Lectins enriched high molecular weight functional membrane proteins with more potential glycosylation such as those involved in signal transduction and cell adhesion. Conversely, hydrazine chemistry isolated a higher proportion of smaller, enzymatic and peripheral membrane proteins such as solute carrier transporters and cytochrome p450s. We have applied our strategy to characterize the rat liver membrane glycoproteome and identified four new predicted GPI-anchored proteins and two that have not previously been seen in the liver. We also identified 424 nonredundant membrane proteins, of which 335 had potential N-linked glycosylation sites.


Biochemical Journal | 2010

The glycosylation of human synovial lubricin: implications for its role in inflammation

Ruby P. Estrella; John M. Whitelock; Nicolle H. Packer; Niclas G. Karlsson

Acidic proteins were isolated from synovial fluid from two osteoarthritic and two rheumatoid arthritic patients and identified by MS. It was found that the most abundant protein in all of the samples was the mucin-like protein lubricin. Further characterization of lubricin from the different patients by LC (liquid chromatography)-MS of released oligosaccharides showed that the core 1 O-linked oligosaccharides NeuAc alpha2-3Gal beta1-3GalNAc and NeuAc alpha2-3Gal beta1-3(NeuAc alpha2-6)GalNAc were the dominating structures on lubricin. The latter was found to be more prevalent in the rheumatoid arthritis samples, indicating that sialylation is up-regulated as part of the inflammatory response. In addition to these dominating structures, core 2 structures were also found in low amounts, where the largest was the disialylated hexasaccharide corresponding to the sequence NeuAc alpha2-3Ga lbeta1-3(NeuAc alpha2-3Gal beta1-3/4GlcNAc beta1-6)GalNAc. It was also found that a small proportion of the core 2 oligosaccharides carried sulfate. The ability of lubricin to present complex glycosylation reflecting the state of the joint tissue makes lubricin a candidate as a carrier of inflammatory oligosaccharide epitopes. In particular, it was shown that lubricin from inflamed arthritic tissue was recognized by the antibody MECA-79 and thus carried the sulfated epitope proposed to be part of the L-selectin ligand that is responsible for recruitment of leucocytes to inflammatory sites.


Biochemical Journal | 2005

Mucin glycosylation changes in cystic fibrosis lung disease are not manifest in submucosal gland secretions

Benjamin L. Schulz; Andrew John Sloane; Leanne J. Robinson; Lucille T. Sebastian; Allan R. Glanville; Yuanlin Song; A. S. Verkman; Jenny L. Harry; Nicolle H. Packer; Niclas G. Karlsson

SMG (submucosal gland) secretions are a major component of the airway surface liquid, are associated with innate immunity in the lung, and have been reported to be altered in lung disease. Changes in lung mucosal glycosylation have been reported in CF (cystic fibrosis), which may be responsible for differential bacterial binding to glycosylated components in the lung mucosa and hence increased pre-disposition to pulmonary infection. Glycoproteomic analysis was performed on SMG secretions collected from explanted bronchial tissue of subjects with severe lung disease, with and without CF, and controls without lung disease. Mucins MUC5B and MUC5AC were shown to be the dominant high-molecular-mass glycoprotein components, with a minor non-mucin glycoprotein component, gp-340, also present. Oligosaccharides containing blood-group determinants corresponding to subjects blood type were abundant on MUC5B/MUC5AC, as were Lewis-type epitopes and their sialylated analogues, which are ligands for pathogens and leucocytes. No significant differences were found in the glycosylation of MUC5B/MUC5AC or gp-340 between CF and non-CF subjects with severe lung disease, implying that CF does not influence SMG secretion mucin glycosylation in end-stage lung disease. There were also no significant differences found in the glycosylation of these components in severe lung disease compared with non-diseased lungs. This suggests that previously reported changes in the glycosylation of respiratory glycoconjugates in CF, and other pulmonary conditions, are not due to the glycosylation of components in SMG secretions, but may involve other secretions, responses or extracellular factors.


Omics A Journal of Integrative Biology | 2010

The Lectin Riddle: Glycoproteins Fractionated from Complex Mixtures Have Similar Glycomic Profiles

Albert Lee; Miyako Nakano; Marina Hincapie; Daniel Kolarich; Mark S. Baker; William S. Hancock; Nicolle H. Packer

One common method used for analyzing the glycoproteome is chromatography using multiple lectins that display different affinities toward oligosaccharide structures. Much has been done to determine lectin affinity using standard glycoproteins with known glycosylation; however, a knowledge of the selectivity and specificity of lectins exposed to complex mixtures of proteins is required if they are to be used as a means of studying the glycoproteome. In the present study, three lectins (Concanavalin A, Jacalin, and Wheat Germ Agglutinin) were used to fractionate glycoproteins from two different complex environments: (1) cell membranes and (2) plasma. Reproducible enrichment of glycoproteins from these samples has been shown to result from the combined use of these lectins. However, the global glycan profiles of the released N- and O-linked oligosaccharides from the glycoproteins retained by the lectins, and from those glycoproteins that did not bind, using both these complex samples, were found to be very similar. That is, although the lectins selectively and reproducibly retained some glycoproteins, other proteins with the same attached oligosaccharide structures did not bind. Some small N- and O-glycan differences were observed in the bound fractions but there was little absolute specificity toward individual oligosaccharide structures known to have high affinity to these lectins. These data indicate that lectins are useful for fractionating glycoproteins from complex mixtures, but that the overall glycoproteome is not isolated by this approach.

Collaboration


Dive into the Nicolle H. Packer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc R. Wilkins

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Whitelock

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Leanne J. Robinson

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge