Niculina Musat
Helmholtz Centre for Environmental Research - UFZ
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Niculina Musat.
Science | 2012
Anne W. Thompson; Rachel A. Foster; Andreas Krupke; Brandon J. Carter; Niculina Musat; Daniel Vaulot; Marcel M. M. Kuypers; Jonathan P. Zehr
Fixing on a Marine Partnership Nitrogen fixation by microorganisms determines the productivity of the biosphere. Although plants photosynthesize by virtue of the ancient incorporation of cyanobacteria to form chloroplasts, no equivalent endosymbiotic event has occurred for nitrogen fixation. Nevertheless, in terrestrial environments, nitrogen-fixing symbioses between bacteria and plants, for example, are common. Thompson et al. (p. 1546) noticed that the ubiquitous marine cyanobacterium UCYN-A has an unusually streamlined genome lacking components of the photosynthetic machinery and central carbon metabolism—all suggestive of being an obligate symbiont. By using gentle filtration methods for raw seawater, a tiny eukaryote partner for UCYN-A of less than 3-µm in diameter was discovered. The bacterium sits on the cell wall of this calcifying picoeukaryote, donating fixed nitrogen and receiving fixed carbon in return. A nitrogen-fixing cyanobacterium that lacks photosynthesis and the tricarboxylic acid cycle possesses a tiny phytoplankton symbiont. Symbioses between nitrogen (N)2–fixing prokaryotes and photosynthetic eukaryotes are important for nitrogen acquisition in N-limited environments. Recently, a widely distributed planktonic uncultured nitrogen-fixing cyanobacterium (UCYN-A) was found to have unprecedented genome reduction, including the lack of oxygen-evolving photosystem II and the tricarboxylic acid cycle, which suggested partnership in a symbiosis. We showed that UCYN-A has a symbiotic association with a unicellular prymnesiophyte, closely related to calcifying taxa present in the fossil record. The partnership is mutualistic, because the prymnesiophyte receives fixed N in exchange for transferring fixed carbon to UCYN-A. This unusual partnership between a cyanobacterium and a unicellular alga is a model for symbiosis and is analogous to plastid and organismal evolution, and if calcifying, may have important implications for past and present oceanic N2 fixation.
The ISME Journal | 2013
Ulrike Jaekel; Niculina Musat; Birgit Adam; Marcel M. M. Kuypers; Olav Grundmann; Florin Musat
The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20u2009°C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with 13C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in 13C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture.
Systematic and Applied Microbiology | 2014
Niculina Musat; Hryhoriy Stryhanyuk; Petra Bombach; Lorenz Adrian; Jean-Nicolas Audinot; Hans H. Richnow
The use of nanoSIMS for the exploration of microbial activities in natural habitats often implies that stable isotope tracer experiments are combined with in situ hybridization techniques (i.e. fluorescence in situ hybridization (FISH) or catalyzed reporter deposition (CARD)-FISH). In this study, Pseudomonas putida grown on (13)C- and (15)N-labeled carbon and nitrogen, collected in exponential growth and stationary phases, was hybridized and analyzed by nanoSIMS. It was shown that (13)C and (15)N fractions decreased after FISH and CARD-FISH in comparison to chemically untreated cells. However, the fractions were influenced differently by various treatments. After paraformaldehyde fixation of exponentially growing cells, a reduction of the (13)C and (15)N fractions was measured from 94±1.2% and 89.5±3.8% to 90.2±0.8% and 64±4.6%, respectively, indicating that nitrogen isotopic composition was most influenced. A further decrease of the (13)C and (15)N fractions to 80.7±6.5 and 59.5±4.1%, respectively, was measured after FISH, while CARD-FISH decreased the fractions to 57.4±3.0% and 47.1±4.1%, respectively. The analysis of cells collected in different growth phases revealed that the effect of various treatments seemed to be dependent on the cells physiological state. In addition, a mathematical model that can be used in further studies was developed in order to calculate the amount of carbon introduced into the cells by chemical treatments. These results can be valuable for environmental FISH-nanoSIMS studies where the isotopic composition of single cells will be used to quantitatively assess the importance of specific populations to certain biochemical processes and determine budget estimations.
Frontiers in Microbiology | 2015
Matthias Zimmermann; Stéphanie Escrig; Thomas Hübschmann; Mathias K. Kirf; Andreas Brand; R. Fredrik Inglis; Niculina Musat; Susann Müller; Andres Meibom; Martin Ackermann; Frank Schreiber
Populations of genetically identical microorganisms residing in the same environment can display marked variability in their phenotypic traits; this phenomenon is termed phenotypic heterogeneity. The relevance of such heterogeneity in natural habitats is unknown, because phenotypic characterization of a sufficient number of single cells of the same species in complex microbial communities is technically difficult. We report a procedure that allows to measure phenotypic heterogeneity in bacterial populations from natural environments, and use it to analyze N2 and CO2 fixation of single cells of the green sulfur bacterium Chlorobium phaeobacteroides from the meromictic lake Lago di Cadagno. We incubated lake water with 15N2 and 13CO2 under in situ conditions with and without NH4+. Subsequently, we used flow cell sorting with auto-fluorescence gating based on a pure culture isolate to concentrate C. phaeobacteroides from its natural abundance of 0.2% to now 26.5% of total bacteria. C. phaeobacteroides cells were identified using catalyzed-reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting the 16S rRNA in the sorted population with a species-specific probe. In a last step, we used nanometer-scale secondary ion mass spectrometry to measure the incorporation 15N and 13C stable isotopes in more than 252 cells. We found that C. phaeobacteroides fixes N2 in the absence of NH4+, but not in the presence of NH4+ as has previously been suggested. N2 and CO2 fixation were heterogeneous among cells and positively correlated indicating that N2 and CO2 fixation activity interact and positively facilitate each other in individual cells. However, because CARD-FISH identification cannot detect genetic variability among cells of the same species, we cannot exclude genetic variability as a source for phenotypic heterogeneity in this natural population. Our study demonstrates the technical feasibility of measuring phenotypic heterogeneity in a rare bacterial species in its natural habitat, thus opening the door to study the occurrence and relevance of phenotypic heterogeneity in nature.
Current Opinion in Biotechnology | 2016
Niculina Musat; Florin Musat; Peter K. Weber; Jennifer Pett-Ridge
The combination of stable isotope probing (SIP), NanoSIMS imaging and microbe identification via fluorescence in situ hybridization (FISH) is often used to link identity to function at the cellular level in microbial communities. Many opportunities remain for nanoSIP to identify metabolic interactions and nutrient fluxes within syntrophic associations and obligate symbioses where exchanges can be extremely rapid. However, additional data, such as genomic potential, gene expression or other imaging modalities are often critical to deciphering the mechanisms underlying specific interactions, and researchers must keep sample preparation artefacts in mind. Here we focus on recent applications of nanoSIP, particularly where used to track exchanges of isotopically labelled molecules between organisms. We highlight metabolic interactions within syntrophic consortia, carbon/nitrogen fluxes between phototrophs and their heterotrophic partners, and symbiont-host nutrient sharing.
Nature Communications | 2017
Anja Worrich; Hryhoriy Stryhanyuk; Niculina Musat; Sara König; Thomas Banitz; Florian Centler; Karin Frank; Martin Thullner; Hauke Harms; Hans-Hermann Richnow; Anja Miltner; Matthias Kästner; Lukas Y. Wick
Fungal–bacterial interactions are highly diverse and contribute to many ecosystem processes. Their emergence under common environmental stress scenarios however, remains elusive. Here we use a synthetic microbial ecosystem based on the germination of Bacillus subtilis spores to examine whether fungal and fungal-like (oomycete) mycelia reduce bacterial water and nutrient stress in an otherwise dry and nutrient-poor microhabitat. We find that the presence of mycelia enables the germination and subsequent growth of bacterial spores near the hyphae. Using a combination of time of flight- and nanoscale secondary ion mass spectrometry (ToF- and nanoSIMS) coupled with stable isotope labelling, we link spore germination to hyphal transfer of water, carbon and nitrogen. Our study provides direct experimental evidence for the stimulation of bacterial activity by mycelial supply of scarce resources in dry and nutrient-free environments. We propose that mycelia may stimulate bacterial activity and thus contribute to sustaining ecosystem functioning in stressed habitats.
Current Opinion in Biotechnology | 2016
Haibo Jiang; Matt R. Kilburn; Johan Decelle; Niculina Musat
Nano-scale Secondary Ion Mass Spectrometry (NanoSIMS) is one of the most powerful in situ elemental and isotopic analysis techniques available to biologists. The combination of stable isotope probing with NanoSIMS (nanoSIP) has opened up new avenues for biological studies over the past decade. However, due to limitations inherent with any analytical methodology, additional information from correlative techniques is usually required to address real biological questions. Here we review recent developments in correlative analysis applied to complex biological systems: first, high-resolution tracking of molecules (e.g. peptides, lipids) by correlation with electron microscopy and atomic force microscopy; second, identification of a specific microbial taxon with fluorescence in situ hybridization and quantification of its metabolic capacities; and, third, molecular specific imaging with new probes.
Systematic and Applied Microbiology | 2012
Cecilia Alonso; Niculina Musat; Birgit Adam; Marcel M. M. Kuypers; Rudolf Amann
One of the main goals of microbial ecologists is to assess the contribution of distinct bacterial groups to biogeochemical processes, e.g. carbon cycling. Until very recently, it was not possible to quantify the uptake of a given compound at single cell level. The advent of nano-scale secondary-ion mass spectrometry (nanoSIMS), and its combination with halogen in situ hybridization (HISH) opened up this possibility. Despite its power, difficulties in cell identification during analysis of environmental samples might render this approach challenging for certain applications. A pilot study, designed to quantify the incorporation of phytoplankton-derived carbon by the main clades of heterotrophic aquatic bacteria (i.e. Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes), is used to exemplify and suggest potential solutions to these technical difficulties. The results obtained indicate that the main aquatic bacterial clades quantitatively differ in the incorporation of algae-derived organic matter. From the methodological point of view, they highlight the importance of the concentration of the target cells, which needs to be sufficient to allow for a rapid mapping under the nanoSIMS. Moreover, when working with highly productive waters, organic and inorganic particles pose a serious problem for cell recognition based on HISH-SIMS. In this work several technical suggestions are presented to minimize the above mentioned difficulties, including alternatives to improve the halogen labeling of the cells and proposing the use of a combination of FISH and HISH along with a mapping system. This approach considerably enhances the reliability of cell identification and the speed of the subsequent nanoSIMS analysis in such complex samples.
Journal of Hazardous Materials | 2017
Miriam Bader; Katharina Müller; Harald Foerstendorf; Björn Drobot; Matthias Schmidt; Niculina Musat; Juliet S. Swanson; Donald T. Reed; Thorsten Stumpf; Andrea Cherkouk
The interactions of two extremely halophilic archaea with uranium were investigated at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, the involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.
Environmental Pollution | 2016
Jessica Saatz; Hryhoriy Stryhanyuk; Doris Vetterlein; Niculina Musat; Matthias Otto; Thorsten Reemtsma; Hans H. Richnow; Birgit Daus
Increasing production of rare earth elements (REE) might lead to future contamination of the environment. REE have been shown to accumulate in high concentrations in roots of plants. Plant experiments with Zea mays exposed to a nutrient solution containing gadolinium (Gd) or yttrium (Y) with 10xa0mgxa0L(-1) Gd or Y were carried out to investigate this accumulation behaviour. Total concentrations of 3.17xa0gxa0kg(-1) and 8.43xa0gxa0kg(-1) of Gd and Y were measured in treated plant roots. Using a novel combination of laser ablation mass spectrometry and time-of-flight secondary ion mass spectrometry, imaging of location and concentration of Gd and Y was carried out in root thin sections of treated roots. Single spots of elevated REE concentration were found at the epidermis, while inside the cortex, weak signals of Gd(+) and Y(+) were aligning with the root cell structures. The composition of Gd-containing secondary ions proves an REE-oxide phase accumulated at the epidermis, limiting REE availability for further uptake.