Niek P. van Til
Erasmus University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Niek P. van Til.
Molecular Therapy | 2003
Jurgen Seppen; Roos van der Rijt; Norbert Looije; Niek P. van Til; Wouter H. Lamers; Ronald P. J. Oude Elferink
Bilirubin is glucuronidated by bilirubin UDP-glucuronyltransferase (UGT1A1) before biliary excretion. Because bilirubin is toxic, patients with Crigler–Najjar type I (CN), who have no UGT1A1 activity, suffer severe brain damage early in childhood. The Gunn rat is the model for CN type 1. Gunn rat fetuses were injected with 107 transducing units of UGT1A1 lentiviral vector at the end of the third trimester on embryonic day 19. Serum bilirubin of injected Gunn rats was lowered by 45% compared to untreated controls. This decrease was highly significant (P < 106) and was sustained for more than a year. In treated Gunn rats, bilirubin glucuronides were present in bile and UGT1A1 protein was detected in tissue. Liver, intestine, stomach, pancreas, and other organs were transduced and mostly contained 1% or less vector copies per genome. Tissue distribution was variable among experimental animals but high transduction levels were seen in pancreas and intestine in most animals. Immunohistochemistry of these organs revealed transduction of pancreatic acinar cells and intestinal epithelium. Injection of a lentiviral UGT1A1 vector into third-trimester Gunn rat fetuses corrects the metabolic deficiency and mediates a reduction of serum bilirubin levels that would be therapeutic in humans.
Blood | 2010
Niek P. van Til; Merel Stok; Fatima S. F. Aerts Kaya; Monique C. de Waard; Trudi P. Visser; Marian A. Kroos; Edwin H. Jacobs; Monique Willart; Pascal van der Wegen; Bob J. Scholte; Bart N. Lambrecht; Dirk J. Duncker; Ans T. van der Ploeg; Arnold J. J. Reuser; Monique M.A. Verstegen; Gerard Wagemaker
Pompe disease (acid alpha-glucosidase deficiency) is a lysosomal glycogen storage disorder characterized in its most severe early-onset form by rapidly progressive muscle weakness and mortality within the first year of life due to cardiac and respiratory failure. Enzyme replacement therapy prolongs the life of affected infants and supports the condition of older children and adults but entails lifelong treatment and can be counteracted by immune responses to the recombinant enzyme. We have explored the potential of lentiviral vector-mediated expression of human acid alpha-glucosidase in hematopoietic stem cells (HSCs) in a Pompe mouse model. After mild conditioning, transplantation of genetically engineered HSCs resulted in stable chimerism of approximately 35% hematopoietic cells that overexpress acid alpha-glucosidase and in major clearance of glycogen in heart, diaphragm, spleen, and liver. Cardiac remodeling was reversed, and respiratory function, skeletal muscle strength, and motor performance improved. Overexpression of acid alpha-glucosidase did not affect overall hematopoietic cell function and led to immune tolerance as shown by challenge with the human recombinant protein. On the basis of the prominent and sustained therapeutic efficacy without adverse events in mice we conclude that ex vivo HSC gene therapy is a treatment option worthwhile to pursue.
BMC Biotechnology | 2009
Tanja Deurholt; Niek P. van Til; Aniska A. Chhatta; Lysbeth ten Bloemendaal; Ruth Schwartlander; Catherine Payne; John Plevris; Igor M. Sauer; Robert A. F. M. Chamuleau; Ronald P. J. Oude Elferink; Jurgen Seppen; Ruurdtje Hoekstra
BackgroundA clonal cell line that combines both stable hepatic function and proliferation capacity is desirable for in vitro applications that depend on hepatic function, such as pharmacological or toxicological assays and bioartificial liver systems. Here we describe the generation and characterization of a clonal human cell line for in vitro hepatocyte applications.ResultsCell clones derived from human fetal liver cells were immortalized by over-expression of telomerase reverse transcriptase. The resulting cell line, cBAL111, displayed hepatic functionality similar to the parental cells prior to immortalization, and did not grow in soft agar. Cell line cBAL111 expressed markers of immature hepatocytes, like glutathione S transferase and cytokeratin 19, as well as progenitor cell marker CD146 and was negative for lidocaine elimination. On the other hand, the cBAL111 cells produced urea, albumin and cytokeratin 18 and eliminated galactose. In contrast to hepatic cell lines NKNT-3 and HepG2, all hepatic functions were expressed in cBAL111, although there was considerable variation in their levels compared with primary mature hepatocytes. When transplanted in the spleen of immunodeficient mice, cBAL111 engrafted into the liver and partly differentiated into hepatocytes showing expression of human albumin and carbamoylphosphate synthetase without signs of cell fusion.ConclusionThis novel liver cell line has the potential to differentiate into mature hepatocytes to be used for in vitro hepatocyte applications.
Molecular Therapy | 2011
Marshall W. Huston; Niek P. van Til; Trudi P. Visser; Shazia Arshad; Martijn H. Brugman; Claudia Cattoglio; Ali Nowrouzi; Yuedan Li; Axel Schambach; Manfred Schmidt; Christopher Baum; Christof von Kalle; Fulvio Mavilio; Fang Zhang; Michael P. Blundell; Adrian J. Thrasher; Monique M.A. Verstegen; Gerard Wagemaker
Clinical trials have demonstrated the potential of ex vivo hematopoietic stem cell gene therapy to treat X-linked severe combined immunodeficiency (SCID-X1) using γ-retroviral vectors, leading to immune system functionality in the majority of treated patients without pretransplant conditioning. The success was tempered by insertional oncogenesis in a proportion of the patients. To reduce the genotoxicity risk, a self-inactivating (SIN) lentiviral vector (LV) with improved expression of a codon optimized human interleukin-2 receptor γ gene (IL2RG) cDNA (coγc), regulated by its 1.1 kb promoter region (γcPr), was compared in efficacy to the viral spleen focus forming virus (SF) and the cellular phosphoglycerate kinase (PGK) promoters. Pretransplant conditioning of Il2rg(-/-) mice resulted in long-term reconstitution of T and B lymphocytes, normalized natural antibody titers, humoral immune responses, ConA/IL-2 stimulated spleen cell proliferation, and polyclonal T-cell receptor gene rearrangements with a clear integration preference of the SF vector for proto-oncogenes, contrary to the PGK and γcPr vectors. We conclude that SIN lentiviral gene therapy using coγc driven by the γcPr or PGK promoter corrects the SCID phenotype, potentially with an improved safety profile, and that low-dose conditioning proved essential for immune competence, allowing for a reduced threshold of cell numbers required.
The Journal of Allergy and Clinical Immunology | 2014
Niek P. van Til; Roya Sarwari; Trudi P. Visser; Julia Hauer; Chantal Lagresle-Peyrou; Guus van der Velden; Vidyasagar Malshetty; Patricia Cortes; Arnaud Jollet; Olivier Danos; Barbara Cassani; Fang Zhang; Adrian J. Thrasher; Elena Fontana; Pietro Luigi Poliani; Marina Cavazzana; Monique M.A. Verstegen; Anna Villa; Gerard Wagemaker
BACKGROUNDnRecombination-activating gene 1 (RAG1) deficiency results in severe combined immunodeficiency (SCID) caused by a complete lack of T and B lymphocytes. If untreated, patients succumb to recurrent infections.nnnOBJECTIVESnWe sought to develop lentiviral gene therapy for RAG1-induced SCID and to test its safety.nnnMETHODSnConstructs containing the viral spleen-focus-forming virus (SF), ubiquitous promoters, or cell type-restricted promoters driving sequence-optimized RAG1 were compared for efficacy and safety in sublethally preconditioned Rag1(-/-) mice undergoing transplantation with transduced bone marrow progenitors.nnnRESULTSnPeripheral blood CD3(+) T-cell reconstitution was achieved with SF, ubiquitous promoters, and cell type-restricted promoters but 3- to 18-fold lower than that seen in wild-type mice, and with a compromised CD4(+)/CD8(+) ratio. Mitogen-mediated T-cell responses and T cell-dependent and T cell-independent B-cell responses were not restored, and T-cell receptor patterns were skewed. Reconstitution of mature peripheral blood B cells was approximately 20-fold less for the SF vector than in wild-type mice and often not detectable with the other promoters, and plasma immunoglobulin levels were abnormal. Two months after transplantation, gene therapy-treated mice had rashes with cellular tissue infiltrates, activated peripheral blood CD44(+)CD69(+) T cells, high plasma IgE levels, antibodies against double-stranded DNA, and increased B cell-activating factor levels. Only rather high SF vector copy numbers could boost T- and B-cell reconstitution, but mRNA expression levels during T- and B-cell progenitor stages consistently remained less than wild-type levels.nnnCONCLUSIONSnThese results underline that further development is required for improved expression to successfully treat patients with RAG1-induced SCID while maintaining low vector copy numbers and minimizing potential risks, including autoimmune reactions resembling Omenn syndrome.
Molecular Therapy | 2012
Niek P. van Til; Helen de Boer; Nomusa Mashamba; Agnieszka Wabik; Marshall W. Huston; Trudi P. Visser; Elena Fontana; Pietro Luigi Poliani; Barbara Cassani; Fang Zhang; Adrian J. Thrasher; Anna Villa; Gerard Wagemaker
Recombination activating gene 2 (RAG2) deficiency results in severe combined immunodeficiency (SCID) with complete lack of T and B lymphocytes. Initial gammaretroviral gene therapy trials for other types of SCID proved effective, but also revealed the necessity of safe vector design. We report the development of lentiviral vectors with the spleen focus forming virus (SF) promoter driving codon-optimized human RAG2 (RAG2co), which improved phenotype amelioration compared to native RAG2 in Rag2(-/-) mice. With the RAG2co therapeutic transgene, T-cell receptor (TCR) and immunoglobulin repertoire, T-cell mitogen responses, plasma immunoglobulin levels and T-cell dependent and independent specific antibody responses were restored. However, the thymus double positive T-cell population remained subnormal, possibly due to the SF virus derived element being sensitive to methylation/silencing in the thymus, which was prevented by replacing the SF promoter by the previously reported silencing resistant element (ubiquitous chromatin opening element (UCOE)), and also improved B-cell reconstitution to eventually near normal levels. Weak cellular promoters were effective in T-cell reconstitution, but deficient in B-cell reconstitution. We conclude that immune functions are corrected in Rag2(-/-) mice by genetic modification of stem cells using the UCOE driven codon-optimized RAG2, providing a valid optional vector for clinical implementation.
Retrovirology | 2008
Niek P. van Til; Kirstin M. Heutinck; Roos van der Rijt; Coen C. Paulusma; Michel J.A. van Wijland; David M. Markusic; Ronald P. J. Oude Elferink; Jurgen Seppen
BackgroundThe presence of cholesterol in the Human Immunodeficiency Virus (HIV) lipid envelop is important for viral function as cholesterol depleted viral particles show reduced infectivity. However, it is less well established whether other viral membrane lipids are also important for HIV infection.The ABCB4 protein is a phosphatidyl choline (PC) floppase that mediates transport of PC from the inner to the outer membrane leaflet. This property enabled us to modulate the lipid composition of HIV vectors and study the effects on membrane composition and infection efficiency.ResultsVirus generated in the presence of ABCB4 was enriched in PC and cholesterol but contained less sphingomyelin (SM). Viral titers were reduced 5.9 fold. These effects were not observed with an inactive ABCB4 mutant. The presence of the ABC transport inhibitor verapamil abolished the effect of ABCB4 expression on viral titers.The ABCB4 mediated reduction in infectivity was caused by changes in the viral particles and not by components co purified with the virus because virus made in the presence of ABCB4 did not inhibit virus made without ABCB4 in a competition assay.Incorporation of the envelope protein was not affected by the expression of ABCB4. The inhibitory effect of ABCB4 was independent of the viral envelope as the effect was observed with two different envelope proteins.ConclusionOur data indicate that increasing the PC content of HIV particles reduces infectivity.
PLOS ONE | 2014
Monique M.A. Verstegen; Trudi P. Visser; Sima Kheradmandkia; Dirk Geerts; Shazia Arshad; Noveen Riaz; Frank Grosveld; Niek P. van Til; Jules P.P. Meijerink
Allogeneic hematopoietic stem cell (HSC) transplantations from umbilical cord blood or autologous HSCs for gene therapy purposes are hampered by limited number of stem cells. To test the ability to expand HSCs in vitro prior to transplantation, two growth factor cocktails containing stem cell factor, thrombopoietin, fms-related tyrosine kinase-3 ligand (STF) or stem cell factor, thrombopoietin, insulin-like growth factor-2, fibroblast growth factor-1 (STIF) either with or without the addition of angiopoietin-like protein-3 (Angptl3) were used. Culturing HSCs in STF and STIF media for 7 days expanded long-term repopulating stem cells content in vivo by ∼6-fold and ∼10-fold compared to freshly isolated stem cells. Addition of Angptl3 resulted in increased expansion of these populations by ∼17-fold and ∼32-fold, respectively, and was further supported by enforced expression of Angptl3 in HSCs through lentiviral transduction that also promoted HSC expansion. As expansion of highly purified lineage-negative, Sca-1+, c-Kit+ HSCs was less efficient than less pure lineage-negative HSCs, Angptl3 may have a direct effect on HCS but also an indirect effect on accessory cells that support HSC expansion. No evidence for leukemia or toxicity was found during long-term follow up of mice transplanted with ex vivo expanded HSCs or manipulated HSC populations that expressed Angptl3. We conclude that the cytokine combinations used in this study to expand HSCs ex vivo enhances the engraftment in vivo. This has important implications for allogeneic umbilical cord-blood derived HSC transplantations and autologous HSC applications including gene therapy.
BMC Biotechnology | 2009
David M. Markusic; Niek P. van Til; Johan K. Hiralall; Ronald P. J. Oude Elferink; Jurgen Seppen
BackgroundLentiviral vectors are well suited for gene therapy because they can mediate long-term expression in both dividing and nondividing cells. However, lentiviral vectors seem less suitable for liver gene therapy because systemically administered lentiviral vectors are preferentially sequestered by liver macrophages. This results in a reduction of available virus and might also increase the immune response to the vector and vector products.Reduction of macrophage sequestration is therefore essential for efficient lentiviral liver gene therapy.ResultsFusions were made of Autographa californica GP64 and the hepatocyte specific Sendai Virus envelope proteins. Lentiviral vectors were produced with either wild type GP64, Sendai-GP64, or both wild type GP64 and Sendai-GP64 and tested in vitro and in vivo for hepatocyte and macrophage gene transfer.Sendai-GP64 pseudotyped vectors showed specific gene transfer to HepG2 hepatoma cells, with no detectable transduction of HeLa cervical carcinoma cells, and a decreased affinity for RAW mouse macrophages. Co-expression of wild type GP64 and Sendai-GP64 resulted in improved viral titers while retaining increased affinity for HepG2 cells.In vivo, the Sendai-GP64 vectors also showed decreased transduction of murine liver macrophages.ConclusionWe demonstrate reduced macrophage transduction in vitro and in vivo with GP64/Sendai chimeric envelope proteins.
Methods of Molecular Biology | 2014
Niek P. van Til; Gerard Wagemaker
Lentiviral vectors can be used to genetically modify a broad range of cells. Hematopoietic stem cells (HSCs) are particularly suitable for lentiviral gene augmentation, because these cells can be enriched with relative ease from mouse bone marrow and human hematopoietic sources, and in principle require relatively limited cell numbers to completely reconstitute the hematopoietic system in vivo. Furthermore, lentiviral vectors are very efficient if pseudotyped with broad tropism envelope proteins. This chapter focuses on gene modification by the use of self-inactivating third-generation human immunodeficiency virus-derived lentiviral vectors for ex vivo HSC modification for both mouse and human application.