Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niel A. Karrow is active.

Publication


Featured researches published by Niel A. Karrow.


Genomics | 2010

A principal component regression based genome wide analysis approach reveals the presence of a novel QTL on BTA7 for MAP resistance in holstein cattle.

Sameer D. Pant; F.S. Schenkel; Chris P. Verschoor; Qiumei You; David F. Kelton; Stephen S. Moore; Niel A. Karrow

Bovine Johnes disease (JD), caused by Mycobacterium avium spp. paratuberculosis (MAP), causes significant losses to the dairy and beef cattle industries. Effective vaccination or therapeutic strategies against this disease are currently unavailable and infected animals either get culled or die due to clinical disease. An alternative strategy to manage the disease is to selectively breed animals with enhanced resistance to MAP infection. Therefore, the objective of this study was to identify genetic loci putatively associated with MAP infection in a resource population consisting of Holstein cattle using a genome-wide association approach. The BovineSNP50 BeadChip, containing 54,001 single nucleotide polymorphisms (SNPs), was used to genotype 232 animals with known MAP infection status. Since, traditional case-control analytical techniques are based on single-marker analysis and do not account for the existence of linkage disequilibrium (LD) between markers, we used a novel principal component regression approach, where each SNP was fit in a logistic regression model, along with principal components of other SNPs on the same chromosome showing association with the trait, as covariates. Such an approach allowed us to account for the LD that exists between multiple markers showing an association on the same chromosome. Our analysis revealed the presence of at least 12 genomic regions on BTA1, 5, 6, 7, 10, 11 and 14 that were associated with the MAP infection status of our resource population. A brief description of these genomic regions, and a discussion of the analysis used in this study, have been presented.


BMC Genomics | 2007

Identification of single nucleotide polymorphisms in bovine CARD15 and their associations with health and production traits in Canadian Holsteins

Sameer D. Pant; F.S. Schenkel; Ivan Leyva-Baca; B.S. Sharma; Niel A. Karrow

BackgroundToll-like receptor-2 (TLR2) and Caspase Recruitment Domain 15 (CARD15) are important pattern recognition receptors that play a role in the initiation of the inflammatory and subsequent immune response. They have been previously identified as susceptibility loci for inflammatory bowel diseases in humans and are, therefore, suitable candidate genes for inflammatory disease resistance in cattle. The objective of this study was to identify single nucleotide polymorphisms (SNPs) in the bovine TLR2 and CARD15 and evaluate the association of these SNPs with health and production traits in a population of Canadian Holstein bulls.ResultsA selective DNA pool was constructed based on the estimated breeding values (EBVs) for SCS. Gene segments were amplified from this pool in PCR reactions and the amplicons sequenced to reveal polymorphisms. A total of four SNPs, including one in intron 10 (c.2886-14A>G) and three in the exon 12 (c.3020A>T, c.4500A>C and c.4950C>T) were identified in CARD15; none were identified in TLR2. Canadian Holstein bulls (n = 338) were genotyped and haplotypes were reconstructed. Two SNPs, c.3020A>T and c.4500A>C, were associated with EBVs for health and production traits. The SNP, c.3020A>T, for example, was associated with SCS EBVs (p = 0.0097) with an allele substitution effect of 0.07 score. When compared to the most frequent haplotype Hap12(AC), Hap22(TC) was associated with increased milk (p < 0.0001) and protein (p = 0.0007) yield EBVs, and hap21(TA) was significantly associated with increased SCS EBV(p = 0.0120). All significant comparison-wise associations retained significance at 8% experimental-wise level by permutation test.ConclusionThis study indicates that SNP c.3020A>T might play a role in the host response against mastitis and further detailed studies are needed to understand its functional mechanisms.


Genetics Selection Evolution | 2003

Evaluation of immune responses of cattle as a means to identify high or low responders and use of a human microarray to differentiate gene expression

Armando Hernández; Niel A. Karrow; Bonnie A. Mallard

An immune response (IR) index to identify cows with high (H) and low (L) antibody-mediated immune responses (AMIR) had been previously devised. High AMIR associated with decreased mastitis and improved response to vaccination. Measurement of cell-mediated immune response (CMIR) was not included in the index; therefore various antigen/adjuvant combinations were evaluated as inducers of DTH to be added to the IR-index. The Bacillus Calmette Guérin (BCG)-induced/purified protein derivative (PPD)-elicited tuberculin skin test is a reliable measure of DTH; however, its use to identify livestock with high CMIR may be confounded due to previous exposure to Mycobacteria tuberculosis. DTH to BCG/PPD was therefore compared with that induced by Mycobacteria phlei (saprophyte) and its derivative phlein as the test antigen. Antibody to OVA was also evaluated. The results indicated that BCG/PPD and M. phlei/phlein induced similar DTH, but cross reaction to PPD was evident following induction of DTH using M. phlei making it a less than ideal alternative for testing livestock. Nonetheless, cows could be ranked for both AMIR and CMIR. RNA from two cows with the highest and lowest IR ranks was then used to probe a human 1.7 kD microarray to determine the ability of a human array to provide information on bovine genes associated with H and L.


BMC Genomics | 2009

Osteopontin: an early innate immune marker of Escherichia coli mastitis harbors genetic polymorphisms with possible links with resistance to mastitis

Karin Alain; Niel A. Karrow; Catherine Thibault; Jessika St-Pierre; M. Lessard; Nathalie Bissonnette

BackgroundMastitis is the most important disease in dairy cows and it causes significant lost of profit to producers. Identification of the genes, and their variants, involved in innate immune responses is essential for the understanding of this inflammatory disease and to identify potential genetic markers for resistance to mastitis. The progeny of dairy cows would benefit from receiving favourable alleles that support greater resistance to infection, thus reducing antibiotic use. This study aims to identify a key gene in the innate immune response to mastitis, led us to evaluate its genetic association with somatic cell score (SCS), which is an indicator of clinical mastitis, and to evaluate its impact on other traits related to milk production.ResultsThe osteopontin transcript (SPP1) was identified in the somatic cells from cows experimentally infected with Escherichia coli. By selecting bulls with extreme estimated breeding values (EBVs) for SCS, which is an indicator of mammary gland health, four DNA polymorphisms in the SPP1 genomic sequence were found. Statistical analysis revealed that the SNP SPP1c.-1301G>A has an impact on EBV for SCS (P < 0.001) Using an allele substitution model, SPP1c.-1251C>T, SPP1c.-430G>A, and SPP1c.*40A>C have an impact on SCS whereas SPP1c.-1301G>A has an effect on the EBVs for milk yield (second and third lactations), fat and protein percentages (all three lactations). Analysis revealed statistically significant differences between haplotype groups at a comparison-wise level with sire EBVS for SCS for the first (P = 0.012), second (P < 0.001), and third (P < 0.001) lactations.ConclusionThis study reports the link between DNA polymorphisms of SPP1, the number of milk immune cells and, potentially, the susceptibility to mastitis. These SNPs were identified by in silico search to be located in transcription factor recognition sites which factors are presumably involved in the Th1 immune response and in the Th2 regulation pathway. Indeed, one SNP abolished the SP1 recognition site, whereas another SNP affected the transcription binding factor IKAROS. All together, these findings support the genetic potential of these variants in terms of selection for the improvement of mastitis resistance in dairy cows.


BMC Veterinary Research | 2011

Changes in Holstein cow milk and serum proteins during intramammary infection with three different strains of Staphylococcus aureus

Yunee Kim; Heba Atalla; Bonnie A. Mallard; Claude Robert; Niel A. Karrow

BackgroundStaphylococcus aureus is one of the most prevalent pathogens to cause mastitis in dairy cattle. Intramammary infection of dairy cows with S. aureus is often subclinical, due to the pathogens ability to evade the innate defense mechanisms, but this can lead to chronic infection. A sub-population of S. aureus, known as small colony variant (SCV), displays atypical phenotypic characteristics, causes persistent infections, and is more resistant to antibiotics than parent strains. Therefore, it was hypothesized that the host immune response will be different for SCV than its parental or typical strains of S. aureus. In this study, the local and systemic immune protein responses to intramammary infection with three strains of S. aureus, including a naturally occurring bovine SCV strain (SCV Heba3231), were characterized. Serum and casein-depleted milk cytokine levels (interleukin-8, interferon-γ, and transforming growth factor-β1), as well as serum haptoglobin concentrations were monitored over time after intramammary infection with each of the three S. aureus strains. Furthermore, comparative proteomics was used to evaluate milk proteome profiles during acute and chronic phases of S. aureus intramammary infection.ResultsSerum IL-8, IFN-γ, and TGF-β1 responses differed in dairy cows challenged with different strains of S. aureus. Changes in overall serum haptoglobin concentrations were observed for each S. aureus challenge group, but there were no significant differences observed between groups. In casein-depleted milk, strain-specific differences in the host IFN-γ response were observed, but inducible IL-8 and TGF-β1 concentrations were not different between groups. Proteomic analysis of the milk following intramammary infection revealed unique host protein expression profiles that were dependent on the infecting strain as well as phase of infection. Notably, the protein, component-3 of the proteose peptone (CPP3), was differentially expressed between the S. aureus treatment groups, implicating it as a potential antimicrobial peptide involved in host defense against S. aureus intramammary infection.ConclusionsIntramammary infection of dairy cattle with S. aureus causes an up-regulation of serum and milk immune-related proteins, and these responses vary depending on the infecting strain.


Poultry Science | 2008

Effects of Feeding Blends of Grains Naturally Contaminated With Fusarium Mycotoxins on Performance, Hematology, Metabolism, and Immunocompetence of Turkeys

C. K. Girish; T. K. Smith; Herman J. Boermans; Niel A. Karrow

An experiment was conducted to investigate the effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on performance, hematology, metabolism, and immunological parameters of turkeys. The efficacy of polymeric glucomannan mycotoxin adsorbent (GMA) in preventing these adverse effects was also evaluated. Three hundred 1-d-old male turkey poults were fed wheat-, corn-, and soybean meal-based starter (0 to 3 wk), grower (4 to 6 wk), developer (7 to 9 wk), and finisher (10 to 12 wk) diets formulated with uncontaminated grains, contaminated grains, and contaminated grains + 0.2% GMA. Feeding contaminated grains significantly decreased BW gains during the grower and developer phases, and GMA supplementation prevented these effects. There was no effect of diet, however, on feed intake or feed efficiency. The feeding of contaminated grains reduced total lymphocyte counts at wk 3 (P < 0.05). Dietary supplementation with GMA increased plasma total protein concentrations compared with controls and birds fed the contaminated diet. Plasma uric acid concentrations in birds fed contaminated grains were increased at the end of the experiment compared with controls, and the feeding of GMA prevented this effect. Feeding contaminated grains significantly increased the percentage of CD4(+) lymphocyte populations during wk 6; however, there was no change in the percentage of CD8(+) and B-lymphocyte populations. Contact hypersensitivity to dinitrochlorobenzene, which is a CD8(+) T cell-mediated delayed-type hypersensitivity response, was significantly decreased after 24 and 72 h by feedborne mycotoxins compared with controls. Supplementation of the contaminated diet with GMA prevented the decrease in response after 24 h. Secondary antibody (IgG titer) response against SRBC antigens (CD4(+) T cell-dependent) was significantly decreased after feeding contaminated grains compared with controls. It was concluded that turkey performance and some blood and immunological parameters were adversely affected by feedborne Fusarium mycotoxins, and GMA prevented many of these effects.


Journal of Pregnancy | 2012

Fetal programming of the neuroendocrine-immune system and metabolic disease

Rebecca E. Fisher; Michael A. Steele; Niel A. Karrow

Adverse uterine environments experienced during fetal development can alter the projected growth pattern of various organs and systems of the body, leaving the offspring at an increased risk of metabolic disease. The thrifty phenotype hypothesis has been demonstrated as an alteration to the growth trajectory to improve the survival and reproductive fitness of the individual. However, when the intrauterine environment does not match the extrauterine environment problems can arise. With the increase in metabolic diseases in both Westernized and developing countries, it is becoming apparent that there is an environmental disconnect with the extrauterine environment. Therefore, the focus of this paper will be to explore the effects of maternal malnutrition on the offsprings susceptibility to metabolic disorders such as obesity, cardiovascular disease, and diabetes with emphasis on programming of the neuroendocrine-immune system.


Veterinary Immunology and Immunopathology | 2010

Gene expression profiling of PBMCs from Holstein and Jersey cows sub-clinically infected with Mycobacterium avium ssp. paratuberculosis

Chris P. Verschoor; Sameer D. Pant; Qiumei You; David F. Kelton; Niel A. Karrow

Infection of calves with intracellular Mycobacterium avium ssp. paratuberculosis (MAP) commonly results in a granulomatous, chronic inflammatory bowel disease known as Johnes disease. The asymptomatic stage of this infection can persist for the entire production life of an adult cow, resulting in reduced performance and premature culling, as well as transmission of MAP to progeny and herd-mates. It has been previously shown that the gene expression profiles of peripheral blood mononuclear cells (PBMCs) of healthy cows, and those chronically infected with MAP are inherently different, and that these changes may be indicative of disease progression. Since resistance to MAP infection is a heritable trait, and has been proposed to differ amongst domestic dairy cattle breeds, the objective of the present study was to compare gene expression profiles of PBMCs from healthy adult Holstein and Jersey cows to those considered to be sub-clinically infected with MAP, as indicated by serum ELISA. Microarray analysis using a platform containing more than 10,000 probes and ontological analysis identified differences in gene expression between a) healthy and infected cows, including genes involved in the inflammatory response, and calcium binding, and b) infected Holsteins and Jerseys, including genes involved in the immune response, and antigen processing and presentation. These results suggest a mixed pro- and anti-inflammatory phenotype of PBMCs from MAP-infected as compared to healthy control animals, and inherently different levels of immune and inflammatory-related gene expression between MAP-infected Holsteins and Jerseys.


Veterinary Immunology and Immunopathology | 2012

Proteomic analysis of plasma from Holstein cows testing positive for Mycobacterium avium subsp. paratuberculosis (MAP).

Qiumei You; Chris P. Verschoor; Sameer D. Pant; Joseph Macri; Gordon M. Kirby; Niel A. Karrow

Johnes disease (JD) is a widespread and economically important chronic inflammatory disease of the small intestine of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Although there are several techniques available for diagnosis of JD, their sensitivity is questionable. New proteome profiling methods, such as serum/plasma protein fingerprinting by 2-Dimensional Fluorescence Difference Gel Electrophoresis (2D-DIGE), may therefore be useful for identifying novel protein biomarkers of MAP infection. In this study, plasma samples were collected from 380 Holstein cows and screened for the presence of MAP infection using the M.pt. Johnes antibody Kit (IDEXX). Five negative (MAP-), and 5 strongly positive (MAP+) cows were selected for proteomic analysis. Highly abundant proteins were depleted from the plasma samples using the ProteoMiner technology (Bio-Rad) to enhance the resolution of low abundance proteins. Plasma samples from MAP-, MAP+, and a pooled internal control were labelled with different fluorescent dyes and separated based on their isoelectrical point (IP) and then their molecular weight. Gel images of the fluorescent plasma protein maps were acquired using a Typhoon scanner and analyzed using the DeCyder software. Proteins that were differentially expressed were excised from the gels, trypsin digested, and subjected to MS/MS analysis for identification. Six proteins were identified as being up-regulated at least 2-fold in MAP+ cows including: transferrin, gelsolin isoforms α & β (actin binding protein - ABP), complement subcomponent C1r, complement component C3, amine oxidase - copper containing 3 (AOC3), and coagulation factor II (thrombin) (p<0.05). Two proteins that were down-regulated approximately 2-fold in the MAP+ cows included coagulation factor XIII -B polypeptide (COAFXIII), and fibrinogen γ chain (FGG) and its precursor.


BMC Genetics | 2010

Polymorphisms in the gene encoding bovine interleukin-10 receptor alpha are associated with Mycobacterium avium ssp. paratuberculosis infection status

Chris P. Verschoor; Sameer D. Pant; Qiumei You; F.S. Schenkel; David F. Kelton; Niel A. Karrow

BackgroundJohnes disease is a chronic inflammatory bowel disease (IBD) of ruminants caused by Mycobacterium avium ssp. paratuberculosis (MAP). Since this pathogen has been implicated in the pathogenesis of human IBDs, the goal of this study was to assess whether single nucleotide polymorphism (SNPs) in several well-known candidate genes for human IBD are associated with susceptibility to MAP infection in dairy cattle.MethodsThe bovine candidate genes, interleukin-10 (IL10), IL10 receptor alpha/beta (IL10RA/B), transforming growth factor beta 1 (TGFB1), TGFB receptor class I/II (TGFBR1/2), and natural resistance-associated macrophage protein 1 (SLC11A1) were sequenced for SNP discovery using pooled DNA samples, and the identified SNPs were genotyped in a case-control association study comprised of 242 MAP negative and 204 MAP positive Holstein dairy cattle. Logistic regression was used to determine the association of SNPs and reconstructed haplotypes with MAP infection status.ResultsA total of 13 SNPs were identified. Four SNPs in IL10RA (984G > A, 1098C > T, 1269T > C, and 1302A > G) were tightly linked, and showed a strong additive and dominance relationship with MAP infection status. Haplotypes AGC and AAT, containing the SNPs IL10RA 633C > A, 984G > A and 1185C > T, were associated with an elevated and reduced likelihood of positive diagnosis by serum ELISA, respectively.ConclusionsSNPs in IL10RA are associated with MAP infection status in dairy cattle. The functional significance of these SNPs warrants further investigation.

Collaboration


Dive into the Niel A. Karrow's collaboration.

Top Co-Authors

Avatar

Sameer D. Pant

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David F. Kelton

Ontario Veterinary College

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge