Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niel M. Henriksen is active.

Publication


Featured researches published by Niel M. Henriksen.


Journal of Chemical Theory and Computation | 2014

Multidimensional Replica Exchange Molecular Dynamics Yields a Converged Ensemble of an RNA Tetranucleotide.

Christina Bergonzo; Niel M. Henriksen; Daniel R. Roe; Jason M. Swails; Adrian E. Roitberg; Thomas E. Cheatham

A necessary step to properly assess and validate the performance of force fields for biomolecules is to exhaustively sample the accessible conformational space, which is challenging for large RNA structures. Given questions regarding the reliability of modeling RNA structure and dynamics with current methods, we have begun to use RNA tetranucleotides to evaluate force fields. These systems, though small, display considerable conformational variability and complete sampling with standard simulation methods remains challenging. Here we compare and discuss the performance of known variations of replica exchange molecular dynamics (REMD) methods, specifically temperature REMD (T-REMD), Hamiltonian REMD (H-REMD), and multidimensional REMD (M-REMD) methods, which have been implemented in Amber’s accelerated GPU code. Using two independent simulations, we show that M-REMD not only makes very efficient use of emerging large-scale GPU clusters, like Blue Waters at the University of Illinois, but also is critically important in generating the converged ensemble more efficiently than either T-REMD or H-REMD. With 57.6 μs aggregate sampling of a conformational ensemble with M-REMD methods, the populations can be compared to NMR data to evaluate force field reliability and further understand how putative changes to the force field may alter populations to be in more consistent agreement with experiment.


Journal of Computer-aided Molecular Design | 2017

Overview of the SAMPL5 host–guest challenge: Are we doing better?

Jian Yin; Niel M. Henriksen; David R. Slochower; Michael R. Shirts; Michael W. Chiu; David L. Mobley; Michael K. Gilson

The ability to computationally predict protein-small molecule binding affinities with high accuracy would accelerate drug discovery and reduce its cost by eliminating rounds of trial-and-error synthesis and experimental evaluation of candidate ligands. As academic and industrial groups work toward this capability, there is an ongoing need for datasets that can be used to rigorously test new computational methods. Although protein–ligand data are clearly important for this purpose, their size and complexity make it difficult to obtain well-converged results and to troubleshoot computational methods. Host–guest systems offer a valuable alternative class of test cases, as they exemplify noncovalent molecular recognition but are far smaller and simpler. As a consequence, host–guest systems have been part of the prior two rounds of SAMPL prediction exercises, and they also figure in the present SAMPL5 round. In addition to being blinded, and thus avoiding biases that may arise in retrospective studies, the SAMPL challenges have the merit of focusing multiple researchers on a common set of molecular systems, so that methods may be compared and ideas exchanged. The present paper provides an overview of the host–guest component of SAMPL5, which centers on three different hosts, two octa-acids and a glycoluril-based molecular clip, and two different sets of guest molecules, in aqueous solution. A range of methods were applied, including electronic structure calculations with implicit solvent models; methods that combine empirical force fields with implicit solvent models; and explicit solvent free energy simulations. The most reliable methods tend to fall in the latter class, consistent with results in prior SAMPL rounds, but the level of accuracy is still below that sought for reliable computer-aided drug design. Advances in force field accuracy, modeling of protonation equilibria, electronic structure methods, and solvent models, hold promise for future improvements.


Journal of Chemical Theory and Computation | 2014

Bridging Calorimetry and Simulation through Precise Calculations of Cucurbituril-Guest Binding Enthalpies.

Andrew T. Fenley; Niel M. Henriksen; Hari S. Muddana; Michael K. Gilson

We used microsecond time scale molecular dynamics simulations to compute, at high precision, binding enthalpies for cucurbit[7]uril (CB7) with eight guests in aqueous solution. The results correlate well with experimental data from previously published isothermal titration calorimetry studies, and decomposition of the computed binding enthalpies by interaction type provides plausible mechanistic insights. Thus, dispersion interactions appear to play a key role in stabilizing these complexes, due at least in part to the fact that their packing density is greater than that of water. On the other hand, strongly favorable Coulombic interactions between the host and guests are compensated by unfavorable solvent contributions, leaving relatively modest electrostatic contributions to the binding enthalpies. The better steric fit of the aliphatic guests into the circular host appears to explain why their binding enthalpies tend to be more favorable than those of the more planar aromatic guests. The present calculations also bear on the validity of the simulation force field. Somewhat unexpectedly, the TIP3P water yields better agreement with experiment than the TIP4P-Ew water model, although the latter is known to replicate the properties of pure water more accurately. More broadly, the present results demonstrate the potential for computational calorimetry to provide atomistic explanations for thermodynamic observations.


Journal of Physical Chemistry B | 2013

Reliable oligonucleotide conformational ensemble generation in explicit solvent for force field assessment using reservoir replica exchange molecular dynamics simulations.

Niel M. Henriksen; Daniel R. Roe; Thomas E. Cheatham

Molecular dynamics force field development and assessment requires a reliable means for obtaining a well-converged conformational ensemble of a molecule in both a time-efficient and cost-effective manner. This remains a challenge for RNA because its rugged energy landscape results in slow conformational sampling and accurate results typically require explicit solvent which increases computational cost. To address this, we performed both traditional and modified replica exchange molecular dynamics simulations on a test system (alanine dipeptide) and an RNA tetramer known to populate A-form-like conformations in solution (single-stranded rGACC). A key focus is on providing the means to demonstrate that convergence is obtained, for example, by investigating replica RMSD profiles and/or detailed ensemble analysis through clustering. We found that traditional replica exchange simulations still require prohibitive time and resource expenditures, even when using GPU accelerated hardware, and our results are not well converged even at 2 μs of simulation time per replica. In contrast, a modified version of replica exchange, reservoir replica exchange in explicit solvent, showed much better convergence and proved to be both a cost-effective and reliable alternative to the traditional approach. We expect this method will be attractive for future research that requires quantitative conformational analysis from explicitly solvated simulations.


Journal of Chemical Theory and Computation | 2015

Computational Calorimetry: High-Precision Calculation of Host–Guest Binding Thermodynamics

Niel M. Henriksen; Andrew T. Fenley; Michael K. Gilson

We present a strategy for carrying out high-precision calculations of binding free energy and binding enthalpy values from molecular dynamics simulations with explicit solvent. The approach is used to calculate the thermodynamic profiles for binding of nine small molecule guests to either the cucurbit[7]uril (CB7) or β-cyclodextrin (βCD) host. For these systems, calculations using commodity hardware can yield binding free energy and binding enthalpy values with a precision of ∼0.5 kcal/mol (95% CI) in a matter of days. Crucially, the self-consistency of the approach is established by calculating the binding enthalpy directly, via end point potential energy calculations, and indirectly, via the temperature dependence of the binding free energy, i.e., by the van’t Hoff equation. Excellent agreement between the direct and van’t Hoff methods is demonstrated for both host–guest systems and an ion-pair model system for which particularly well-converged results are attainable. Additionally, we find that hydrogen mass repartitioning allows marked acceleration of the calculations with no discernible cost in precision or accuracy. Finally, we provide guidance for accurately assessing numerical uncertainty of the results in settings where complex correlations in the time series can pose challenges to statistical analysis. The routine nature and high precision of these binding calculations opens the possibility of including measured binding thermodynamics as target data in force field optimization so that simulations may be used to reliably interpret experimental data and guide molecular design.


Journal of Biomolecular NMR | 2012

Molecular dynamics re-refinement of two different small RNA loop structures using the original NMR data suggest a common structure

Niel M. Henriksen; Darrell R. Davis; Thomas E. Cheatham

Restrained molecular dynamics simulations are a robust, though perhaps underused, tool for the end-stage refinement of biomolecular structures. We demonstrate their utility—using modern simulation protocols, optimized force fields, and inclusion of explicit solvent and mobile counterions—by re-investigating the solution structures of two RNA hairpins that had previously been refined using conventional techniques. The structures, both domain 5 group II intron ribozymes from yeast ai5γ and Pylaiella littoralis, share a nearly identical primary sequence yet the published 3D structures appear quite different. Relatively long restrained MD simulations using the original NMR restraint data identified the presence of a small set of violated distance restraints in one structure and a possibly incorrect trapped bulge nucleotide conformation in the other structure. The removal of problematic distance restraints and the addition of a heating step yielded representative ensembles with very similar 3D structures and much lower pairwise RMSD values. Analysis of ion density during the restrained simulations helped to explain chemical shift perturbation data published previously. These results suggest that restrained MD simulations, with proper caution, can be used to “update” older structures or aid in the refinement of new structures that lack sufficient experimental data to produce a high quality result. Notable cautions include the need for sufficient sampling, awareness of potential force field bias (such as small angle deviations with the current AMBER force fields), and a proper balance between the various restraint weights.


Journal of Organic Chemistry | 2011

Araiosamines A-D: tris-bromoindole cyclic guanidine alkaloids from the marine sponge Clathria (Thalysias) araiosa.

Xiaomei Wei; Niel M. Henriksen; Jack J. Skalicky; Mary Kay Harper; Thomas E. Cheatham; Chris M. Ireland; Ryan M. Van Wagoner

Four new tris-bromoindole cyclic guanidine alkaloids, araiosamines A-D, were isolated from the methanol extract of a marine sponge, Clathria (Thalysias) araiosa, collected from Vanuatu. Their carbon skeletons delineate a new class of indole alkaloids apparently derived from a linear polymerization process involving a carbon-carbon bond formation. Comparison of the structures including the relative configurations suggests a common intermediate containing a dihydroaminopyrimidine moiety capable of undergoing various modalities of conjugate addition to yield unprecedented ring systems.


Journal of Natural Products | 2012

Totopotensamides, Polyketide-Cyclic Peptide Hybrids from a Mollusk-Associated Bacterium Streptomyces sp

Zhenjian Lin; Malem Flores; Imelda Forteza; Niel M. Henriksen; Gisela P. Concepcion; Gary Rosenberg; Margo G. Haygood; Baldomero M. Olivera; Alan R. Light; Thomas E. Cheatham; Eric W. Schmidt

Two new compounds, the peptide-polyketide glycoside totopotensamide A (1) and its aglycone totopotensamide B (2), were isolated from a Streptomyces sp. cultivated from the gastropod mollusk Lienardia totopotens collected in the Philippines. The compounds contain a previously undescribed polyketide component, a novel 2,3-diaminobutyric acid-containing macrolactam, and a new amino acid, 4-chloro-5,7-dihydroxy-6-methylphenylglycine. The application of Marfeys method to phenylglycine derivatives was explored using quantum mechanical calculations and NMR.


Journal of Physical Chemistry B | 2015

Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

Jian Yin; Andrew T. Fenley; Niel M. Henriksen; Michael K. Gilson

Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by nonoptimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery.


Journal of Chemical Theory and Computation | 2015

Binding enthalpy calculations for a neutral host-guest pair yield widely divergent salt effects across water models.

Kaifu Gao; Jian Yin; Niel M. Henriksen; Andrew T. Fenley; Michael K. Gilson

Dissolved salts are a part of the physiological milieu and can significantly influence the kinetics and thermodynamics of various biomolecular processes, such as binding and catalysis; thus, it is important for molecular simulations to reliably describe their effects. The present study uses a simple, nonionized host-guest model system to study the sensitivity of computed binding enthalpies to the choice of water and salt models. Molecular dynamics simulations of a cucurbit[7]uril host with a neutral guest molecule show striking differences in the salt dependency of the binding enthalpy across four water models, TIP3P, SPC/E, TIP4P-Ew, and OPC, with additional sensitivity to the choice of parameters for sodium and chloride. In particular, although all of the models predict that binding will be less exothermic with increasing NaCl concentration, the strength of this effect varies by 7 kcal/mol across models. The differences appear to result primarily from differences in the number of sodium ions displaced from the host upon binding the guest rather than from differences in the enthalpy associated with this displacement, and it is the electrostatic energy that contributes most to the changes in enthalpy with increasing salt concentration. That a high sensitivity of salt affecting the choice of water model, as observed for the present host-guest system despite it being nonionized, raises issues regarding the selection and adjustment of water models for use with biological macromolecules, especially as these typically possess multiple ionized groups that can interact relatively strongly with ions in solution.

Collaboration


Dive into the Niel M. Henriksen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Yin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge