Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niels Birbaumer is active.

Publication


Featured researches published by Niels Birbaumer.


IEEE Transactions on Biomedical Engineering | 2004

BCI2000: a general-purpose brain-computer interface (BCI) system

Dennis J. McFarland; Thilo Hinterberger; Niels Birbaumer; Jonathan R. Wolpaw

Many laboratories have begun to develop brain-computer interface (BCI) systems that provide communication and control capabilities to people with severe motor disabilities. Further progress and realization of practical applications depends on systematic evaluations and comparisons of different brain signals, recording methods, processing algorithms, output formats, and operating protocols. However, the typical BCI system is designed specifically for one particular BCI method and is, therefore, not suited to the systematic studies that are essential for continued progress. In response to this problem, we have developed a documented general-purpose BCI research and development platform called BCI2000. BCI2000 can incorporate alone or in combination any brain signals, signal processing methods, output devices, and operating protocols. This report is intended to describe to investigators, biomedical engineers, and computer scientists the concepts that the BCI2000 system is based upon and gives examples of successful BCI implementations using this system. To date, we have used BCI2000 to create BCI systems for a variety of brain signals, processing methods, and applications. The data show that these systems function well in online operation and that BCI2000 satisfies the stringent real-time requirements of BCI systems. By substantially reducing labor and cost, BCI2000 facilitates the implementation of different BCI systems and other psychophysiological experiments. It is available with full documentation and free of charge for research or educational purposes and is currently being used in a variety of studies by many research groups.


international conference of the ieee engineering in medicine and biology society | 2000

Brain-computer interface technology: a review of the first international meeting

Jonathan R. Wolpaw; Niels Birbaumer; W.J. Heetderks; Dennis J. McFarland; P.H. Peckham; Emanuel Donchin; L.A. Quatrano; C.J. Robinson; T.M. Vaughan

Over the past decade, many laboratories have begun to explore brain-computer interface (BCI) technology as a radically new communication option for those with neuromuscular impairments that prevent them from using conventional augmentative communication methods. BCIs provide these users with communication channels that do not depend on peripheral nerves and muscles. This article summarizes the first international meeting devoted to BCI research and development. Current BCIs use electroencephalographic (EEG) activity recorded at the scalp or single-unit activity recorded from within cortex to control cursor movement, select letters or icons, or operate a neuroprosthesis. The central element in each BCI is a translation algorithm that converts electrophysiological input from the user into output that controls external devices. BCI operation depends on effective interaction between two adaptive controllers, the user who encodes his or her commands in the electrophysiological input provided to the BCI, and the BCI which recognizes the commands contained in the input and expresses them in device control. Current BCIs have maximum information transfer rates of 5-25 b/min. Achievement of greater speed and accuracy depends on improvements in signal processing, translation algorithms, and user training. These improvements depend on increased interdisciplinary cooperation between neuroscientists, engineers, computer programmers, psychologists, and rehabilitation specialists, and on adoption and widespread application of objective methods for evaluating alternative methods. The practical use of BCI technology depends on the development of appropriate applications, identification of appropriate user groups, and careful attention to the needs and desires of individual users. BCI research and development will also benefit from greater emphasis on peer-reviewed publications, and from adoption of standard venues for presentations and discussion.


Pain | 2006

Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values.

Roman Rolke; Ralf Baron; Christoph Maier; Thomas R. Tölle; Rolf-Detlef Treede; Antje Beyer; Andreas Binder; Niels Birbaumer; Frank Birklein; I.C. Bötefür; S. Braune; Herta Flor; Volker Huge; R. Klug; G.B. Landwehrmeyer; Walter Magerl; Christian Maihöfner; C. Rolko; Claudia Schaub; A. Scherens; Till Sprenger; Michael Valet; B. Wasserka

Abstract The nationwide multicenter trials of the German Research Network on Neuropathic Pain (DFNS) aim to characterize the somatosensory phenotype of patients with neuropathic pain. For this purpose, we have implemented a standardized quantitative sensory testing (QST) protocol giving a complete profile for one region within 30 min. To judge plus or minus signs in patients we have now established age‐ and gender‐matched absolute and relative QST reference values from 180 healthy subjects, assessed bilaterally over face, hand and foot. We determined thermal detection and pain thresholds including a test for paradoxical heat sensations, mechanical detection thresholds to von Frey filaments and a 64 Hz tuning fork, mechanical pain thresholds to pinprick stimuli and blunt pressure, stimulus/response‐functions for pinprick and dynamic mechanical allodynia, and pain summation (wind‐up ratio). QST parameters were region specific and age dependent. Pain thresholds were significantly lower in women than men. Detection thresholds were generally independent of gender. Reference data were normalized to the specific group means and variances (region, age, gender) by calculating z‐scores. Due to confidence limits close to the respective limits of the possible data range, heat hypoalgesia, cold hypoalgesia, and mechanical hyperesthesia can hardly be diagnosed. Nevertheless, these parameters can be used for group comparisons. Sensitivity is enhanced by side‐to‐side comparisons by a factor ranging from 1.1 to 2.5. Relative comparisons across body regions do not offer advantages over absolute reference values. Application of this standardized QST protocol in patients and human surrogate models will allow to infer underlying mechanisms from somatosensory phenotypes.


Nature | 1999

A spelling device for the paralysed.

Niels Birbaumer; Nimr Ghanayim; Thilo Hinterberger; I. Iversen; Boris Kotchoubey; Andrea Kübler; J. Perelmouter; E. Taub; Herta Flor

When Jean-Dominique Bauby suffered from a cortico-subcortical stroke that led to complete paralysis with totally intact sensory and cognitive functions, he described his experience in The Diving-Bell and the Butterfly as “something like a giant invisible diving-bell holds my whole body prisoner”. This horrifying condition also occurs as a consequence of a progressive neurological disease, amyotrophic lateral sclerosis, which involves progressive degeneration of all the motor neurons of the somatic motor system. These ‘locked-in’ patients ultimately become unable to express themselves and to communicate even their most basic wishes or desires, as they can no longer control their muscles to activate communication devices. We have developed a new means of communication for the completely paralysed that uses slow cortical potentials (SCPs) of the electro-encephalogram to drive an electronic spelling device.


Journal of Cognitive Neuroscience | 1999

Activation of Cortical and Cerebellar Motor Areas during Executed and Imagined Hand Movements: An fMRI Study

Martin Lotze; Pedro Montoya; Michael Erb; Ernst Hülsmann; Herta Flor; Uwe Klose; Niels Birbaumer; Wolfgang Grodd

Brain activation during executed (EM) and imagined movements (IM) of the right and left hand was studied in 10 healthy right-handed subjects using functional magnetic resonance imagining (fMRI). Low electromyographic (EMG) activity of the musculi flexor digitorum superficialis and high vividness of the imagined movements were trained prior to image acquisition. Regional cerebral activation was measured by fMRI during EM and IM and compared to resting conditions. Anatomically selected regions of interest (ROIs) were marked interactively over the entire brain. In each ROI activated pixels above a t value of 2.45 (p < 0.01) were counted and analyzed. In all subjects the supplementary motor area (SMA), the premotor cortex (PMC), and the primary motor cortex (M1) showed significant activation during both EM and IM; the somatosensory cortex (S1) was significantly activated only during EM. Ipsilateral cerebellar activation was decreased during IM compared to EM. In the cerebellum, IM and EM differed in their foci of maximal activation: Highest ipsilateral activation of the cerebellum was observed in the anterior lobe (Larsell lobule H IV) during EM, whereas a lower maximum was found about 2-cm dorsolateral (Larsell lobule H VII) during IM. The prefrontal and parietal regions revealed no significant changes during both conditions. The results of cortical activity support the hypothesis that motor imagery and motor performance possess similar neural substrates. The differential activation in the cerebellum during EM and IM is in accordance with the assumption that the posterior cerebellum is involved in the inhibition of movement execution during imagination.


Pain | 2010

Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): Somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes

Christoph Maier; Ralf Baron; Thomas R. Tölle; Andreas Binder; Niels Birbaumer; Frank Birklein; Janne Gierthmühlen; Herta Flor; Christian Geber; Volker Huge; Elena K. Krumova; G.B. Landwehrmeyer; Walter Magerl; Christian Maihöfner; Helmut Richter; Roman Rolke; A. Scherens; A. Schwarz; Claudia Sommer; V. Tronnier; Nurcan Üçeyler; Michael Valet; Gunnar Wasner; Rolf-Detlef Treede

&NA; Neuropathic pain is accompanied by both positive and negative sensory signs. To explore the spectrum of sensory abnormalities, 1236 patients with a clinical diagnosis of neuropathic pain were assessed by quantitative sensory testing (QST) following the protocol of DFNS (German Research Network on Neuropathic Pain), using both thermal and mechanical nociceptive as well as non‐nociceptive stimuli. Data distributions showed a systematic shift to hyperalgesia for nociceptive, and to hypoesthesia for non‐nociceptive parameters. Across all parameters, 92% of the patients presented at least one abnormality. Thermosensory or mechanical hypoesthesia (up to 41%) was more frequent than hypoalgesia (up to 18% for mechanical stimuli). Mechanical hyperalgesias occurred more often (blunt pressure: 36%, pinprick: 29%) than thermal hyperalgesias (cold: 19%, heat: 24%), dynamic mechanical allodynia (20%), paradoxical heat sensations (18%) or enhanced wind‐up (13%). Hyperesthesia was less than 5%. Every single sensory abnormality occurred in each neurological syndrome, but with different frequencies: thermal and mechanical hyperalgesias were most frequent in complex regional pain syndrome and peripheral nerve injury, allodynia in postherpetic neuralgia. In postherpetic neuralgia and in central pain, subgroups showed either mechanical hyperalgesia or mechanical hypoalgesia. The most frequent combinations of gain and loss were mixed thermal/mechanical loss without hyperalgesia (central pain and polyneuropathy), mixed loss with mechanical hyperalgesia in peripheral neuropathies, mechanical hyperalgesia without any loss in trigeminal neuralgia. Thus, somatosensory profiles with different combinations of loss and gain are shared across the major neuropathic pain syndromes. The characterization of underlying mechanisms will be needed to make a mechanism‐based classification feasible.


The Journal of Physiology | 2007

Brain-computer interfaces : communication and restoration of movement in paralysis

Niels Birbaumer; Leonardo G. Cohen

The review describes the status of brain–computer or brain–machine interface research. We focus on non‐invasive brain–computer interfaces (BCIs) and their clinical utility for direct brain communication in paralysis and motor restoration in stroke. A large gap between the promises of invasive animal and human BCI preparations and the clinical reality characterizes the literature: while intact monkeys learn to execute more or less complex upper limb movements with spike patterns from motor brain regions alone without concomitant peripheral motor activity usually after extensive training, clinical applications in human diseases such as amyotrophic lateral sclerosis and paralysis from stroke or spinal cord lesions show only limited success, with the exception of verbal communication in paralysed and locked‐in patients. BCIs based on electroencephalographic potentials or oscillations are ready to undergo large clinical studies and commercial production as an adjunct or a major assisted communication device for paralysed and locked‐in patients. However, attempts to train completely locked‐in patients with BCI communication after entering the complete locked‐in state with no remaining eye movement failed. We propose that a lack of contingencies between goal directed thoughts and intentions may be at the heart of this problem. Experiments with chronically curarized rats support our hypothesis; operant conditioning and voluntary control of autonomic physiological functions turned out to be impossible in this preparation. In addition to assisted communication, BCIs consisting of operant learning of EEG slow cortical potentials and sensorimotor rhythm were demonstrated to be successful in drug resistant focal epilepsy and attention deficit disorder. First studies of non‐invasive BCIs using sensorimotor rhythm of the EEG and MEG in restoration of paralysed hand movements in chronic stroke and single cases of high spinal cord lesions show some promise, but need extensive evaluation in well‐controlled experiments. Invasive BMIs based on neuronal spike patterns, local field potentials or electrocorticogram may constitute the strategy of choice in severe cases of stroke and spinal cord paralysis. Future directions of BCI research should include the regulation of brain metabolism and blood flow and electrical and magnetic stimulation of the human brain (invasive and non‐invasive). A series of studies using BOLD response regulation with functional magnetic resonance imaging (fMRI) and near infrared spectroscopy demonstrated a tight correlation between voluntary changes in brain metabolism and behaviour.


Neuroscience Letters | 1997

Extensive reorganization of primary somatosensory cortex in chronic back pain patients.

Herta Flor; Christoph Braun; Thomas Elbert; Niels Birbaumer

The hypothesis of reorganization of the primary somatosensory cortex in states of chronic pain was assessed in 10 low back pain patients and nine matched healthy controls. Intracutaneous electric stimuli were applied to the left back and index finger at a standard, a non-painful and a painful intensity. Magnetic fields were recorded by a 37-channel BTi biomagnetometer from the hemisphere contralateral to the site of stimulation. The power of the early evoked magnetic field (< 100 ms) elicited by painful stimulation of the painful back in very chronic patients was elevated relative to that elicited by painful back stimulation of healthy controls and showed a linear increase with chronicity (r = 0.74). The maximum activity elicited in primary somatosensory cortex was shifted more medially in the very chronic back pain subjects. These data suggest that chronic pain is accompanied by cortical reorganization and may serve an important function in the persistence of the pain experience.


IEEE Transactions on Biomedical Engineering | 2004

The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials

Benjamin Blankertz; Klaus-Robert Müller; Gabriel Curio; Theresa M. Vaughan; Jonathan R. Wolpaw; Alois Schlögl; Christa Neuper; Gert Pfurtscheller; Thilo Hinterberger; Michael Schröder; Niels Birbaumer

Interest in developing a new method of man-to-machine communication-a brain-computer interface (BCI)-has grown steadily over the past few decades. BCIs create a new communication channel between the brain and an output device by bypassing conventional motor output pathways of nerves and muscles. These systems use signals recorded from the scalp, the surface of the cortex, or from inside the brain to enable users to control a variety of applications including simple word-processing software and orthotics. BCI technology could therefore provide a new communication and control option for individuals who cannot otherwise express their wishes to the outside world. Signal processing and classification methods are essential tools in the development of improved BCI technology. We organized the BCI Competition 2003 to evaluate the current state of the art of these tools. Four laboratories well versed in EEG-based BCI research provided six data sets in a documented format. We made these data sets (i.e., labeled training sets and unlabeled test sets) and their descriptions available on the Internet. The goal in the competition was to maximize the performance measure for the test labels. Researchers worldwide tested their algorithms and competed for the best classification results. This paper describes the six data sets and the results and function of the most successful algorithms.


Clinical Neurophysiology | 2008

A P300-based brain–computer interface for people with amyotrophic lateral sclerosis

Femke Nijboer; Eric W. Sellers; Jürgen Mellinger; M.A. Jordan; Tamara Matuz; Adrian Furdea; Sebastian Halder; U. Mochty; Dean J. Krusienski; Theresa M. Vaughan; Jonathan R. Wolpaw; Niels Birbaumer; Andrea Kübler

OBJECTIVE The current study evaluates the efficacy of a P300-based brain-computer interface (BCI) communication device for individuals with advanced ALS. METHODS Participants attended to one cell of a N x N matrix while the N rows and N columns flashed randomly. Each cell of the matrix contained one character. Every flash of an attended character served as a rare event in an oddball sequence and elicited a P300 response. Classification coefficients derived using a stepwise linear discriminant function were applied to the data after each set of flashes. The character receiving the highest discriminant score was presented as feedback. RESULTS In Phase I, six participants used a 6 x 6 matrix on 12 separate days with a mean rate of 1.2 selections/min and mean online and offline accuracies of 62% and 82%, respectively. In Phase II, four participants used either a 6 x 6 or a 7 x 7 matrix to produce novel and spontaneous statements with a mean online rate of 2.1 selections/min and online accuracy of 79%. The amplitude and latency of the P300 remained stable over 40 weeks. CONCLUSIONS Participants could communicate with the P300-based BCI and performance was stable over many months. SIGNIFICANCE BCIs could provide an alternative communication and control technology in the daily lives of people severely disabled by ALS.

Collaboration


Dive into the Niels Birbaumer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralf Veit

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ranganatha Sitaram

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge