Niels de Wind
Leiden University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Niels de Wind.
Cell | 1995
Niels de Wind; Marleen Dekker; Anton Berns; Miroslav Radman; Hein te Riele
To investigate the role of the presumed DNA mismatch repair (MMR) gene Msh2 in genome stability and tumorigenesis, we have generated cells and mice that are deficient for the gene. Msh2-deficient cells have lost mismatch binding and have acquired microsatellite instability, a mutator phenotype, and tolerance to methylating agents. Moreover, in these cells, homologous recombination has lost dependence on complete identity between interacting DNA sequences, suggesting that Msh2 is involved in safeguarding the genome from promiscuous recombination. Msh2-deficient mice display no major abnormalities, but a significant fraction develops lymphomas at an early age. Thus, Msh2 is involved in MMR, controlling several aspects of genome stability; loss of MMR-controlled genome stability predisposes to cancer.
Nature | 2000
Meindert H. Lamers; Anastassis Perrakis; Jacqueline H. Enzlin; Herrie H. K. Winterwerp; Niels de Wind; Titia K. Sixma
DNA mismatch repair ensures genomic integrity on DNA replication. Recognition of a DNA mismatch by a dimeric MutS protein initiates a cascade of reactions and results in repair of the newly synthesized strand; however, details of the molecular mechanism remain controversial. Here we present the crystal structure at 2.2 Å of MutS from Escherichia coli bound to a G·T mismatch. The two MutS monomers have different conformations and form a heterodimer at the structural level. Only one monomer recognizes the mismatch specifically and has ADP bound. Mismatch recognition occurs by extensive minor groove interactions causing unusual base pairing and kinking of the DNA. Nonspecific major groove DNA-binding domains from both monomers embrace the DNA in a clamp-like structure. The interleaved nucleotide-binding sites are located far from the DNA. Mutations in human MutSα (MSH2/MSH6) that lead to hereditary predisposition for cancer, such as hereditary non-polyposis colorectal cancer, can be mapped to this crystal structure.
Journal of Experimental Medicine | 2006
Jacob G. Jansen; Petra Langerak; Anastasia Tsaalbi-Shtylik; Paul C.M. van den Berk; Heinz Jacobs; Niels de Wind
Somatic hypermutation of Ig genes enables B cells of the germinal center to generate high-affinity immunoglobulin variants. Key intermediates in somatic hypermutation are deoxyuridine lesions, introduced by activation-induced cytidine deaminase. These lesions can be processed further to abasic sites by uracil DNA glycosylase. Mutagenic replication of deoxyuridine, or of its abasic derivative, by translesion synthesis polymerases is hypothesized to underlie somatic hypermutation. Rev1 is a translesion synthesis polymerase that in vitro incorporates uniquely deoxycytidine opposite deoxyuridine and abasic residues. To investigate a role of Rev1 in mammalian somatic hypermutation we have generated mice deficient for Rev1. Although Rev1−/− mice display transient growth retardation, proliferation of Rev1−/− LPS-stimulated B cells is indistinguishable from wild-type cells. In mutated Ig genes from Rev1−/− mice, C to G transversions were virtually absent in the nontranscribed (coding) strand and reduced in the transcribed strand. This defect is associated with an increase of A to T, C to A, and T to C substitutions. These results indicate that Rev1 incorporates deoxycytidine residues, most likely opposite abasic nucleotides, during somatic hypermutation. In addition, loss of Rev1 causes compensatory increase in mutagenesis by other translesion synthesis polymerases.
Human Mutation | 2008
Fergus J. Couch; Lene Juel Rasmussen; Robert M. W. Hofstra; Alvaro N.A. Monteiro; Marc S. Greenblatt; Niels de Wind
Inherited predisposition to disease is often linked to reduced activity of a disease associated gene product. Thus, quantitation of the influence of inherited variants on gene function can potentially be used to predict the disease relevance of these variants. While many disease genes have been extensively characterized at the functional level, few assays based on functional properties of the encoded proteins have been established for the purpose of predicting the contribution of rare inherited variants to disease. Much of the difficulty in establishing predictive functional assays stems from the technical complexity of the assays. However, perhaps the most challenging aspect of functional assay development for clinical testing purposes is the absolute requirement for validation of the sensitivity and specificity of the assays and the determination of positive predictive values (PPVs) and negative predictive values (NPVs) of the assays relative to a “gold standard” measure of disease predisposition. In this commentary, we provide examples of some of the functional assays under development for several cancer predisposition genes (BRCA1, BRCA2, CDKN2A, and mismatch repair [MMR] genes MLH1, MSH2, MSH6, and PMS2) and present a detailed review of the issues associated with functional assay development. We conclude that validation is paramount for all assays that will be used for clinical interpretation of inherited variants of any gene, but note that in certain circumstances information derived from incompletely validated assays may be valuable for classification of variants for clinical purposes when used to supplement data derived from other sources. Hum Mutat 29(11), 1314–1326, 2008.
Molecular and Cellular Biology | 2002
Petra P. H. Van Sloun; Isabelle Varlet; Edwin Sonneveld; Jan J. W. A. Boei; Ron J. Romeijn; Jan C. J. Eeken; Niels de Wind
ABSTRACT The Rev3 gene of Saccharomyces cerevisiae encodes the catalytic subunit of DNA polymerase ζ that is implicated in mutagenic translesion synthesis of damaged DNA. To investigate the function of its mouse homologue, we have generated mouse embryonic stem cells and mice carrying a targeted disruption of Rev3. Although some strain-dependent variation was observed, Rev3−/− embryos died around midgestation, displaying retarded growth in the absence of consistent developmental abnormalities. Rev3−/− cell lines could not be established, indicating a cell-autonomous requirement of Rev3 for long-term viability. Histochemical analysis of Rev3−/− embryos did not reveal aberrant replication or cellular proliferation but demonstrated massive apoptosis in all embryonic lineages. Although increased levels of p53 are detected in Rev3−/− embryos, the embryonic phenotype was not rescued by the absence of p53. A significant increase in double-stranded DNA breaks as well as chromatid and chromosome aberrations was observed in cells from Rev3−/− embryos. The inner cell mass of cultured Rev3−/− blastocysts dies of a delayed apoptotic response after exposure to a low dose of N-acetoxy-2-acetylaminofluorene. These combined data are compatible with a model in which, in the absence of polymerase ζ, double-stranded DNA breaks accumulate at sites of unreplicated DNA damage, eliciting a p53-independent apoptotic response. Together, these data are consistent with involvement of polymerase ζ in translesion synthesis of endogenously and exogenously induced DNA lesions.
Nucleic Acids Research | 2012
Noam Diamant; Ayal Hendel; Ilan Vered; Thomas Carell; Thomas Reißner; Niels de Wind; Nicholas Geacinov; Zvi Livneh
Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-irradiated mammalian cells, chromosomal single-stranded gaps formed in S phase during replication persist into the G2 phase of the cell cycle, where their repair is completed depending on DNA polymerase ζ and Rev1. Analysis of TLS using a high-resolution gapped-plasmid assay system in cell populations enriched by centrifugal elutriation for specific cell cycle phases showed that TLS operates both in S and G2. Moreover, the mutagenic specificity of TLS in G2 was different from S, and in some cases overall mutation frequency was higher. These results suggest that TLS repair of single-stranded gaps caused by DNA lesions can lag behind chromosomal replication, is separable from it, and occurs both in the S and G2 phases of the cell cycle. Such a mechanism may function to maintain efficient replication, which can progress despite the presence of DNA lesions, with TLS lagging behind and patching regions of discontinuity.
Human Mutation | 2012
Lene Juel Rasmussen; Christopher D. Heinen; Brigitte Royer-Pokora; Mark Drost; Sean V. Tavtigian; Robert M.W. Hofstra; Niels de Wind
Lynch syndrome (LS) is caused by germline mutations in DNA mismatch repair (MMR) genes and is the most prevalent hereditary colorectal cancer syndrome. A significant proportion of variants identified in MMR and other common cancer susceptibility genes are missense or noncoding changes whose consequences for pathogenicity cannot be easily interpreted. Such variants are designated as “variants of uncertain significance” (VUS). Management of LS can be significantly improved by identifying individuals who carry a pathogenic variant and thus benefit from screening, preventive, and therapeutic measures. Also, identifying family members that do not carry the variant is important so they can be released from the intensive surveillance. Determining which genetic variants are pathogenic and which are neutral is a major challenge in clinical genetics. The profound mechanistic knowledge on the genetics and biochemistry of MMR enables the development and use of targeted assays to evaluate the pathogenicity of variants found in suspected patients with LS. We describe different approaches for the functional analysis of MMR gene VUS and propose development of a validated diagnostic framework. Furthermore, we call attention to common misconceptions about functional assays and endorse development of an integrated approach comprising validated assays for diagnosis of VUS in patients suspected of LS. Hum Mutat 33:1617–1625, 2012.
DNA Repair | 2009
Jacob G. Jansen; Anastasia Tsaalbi-Shtylik; Giel Hendriks; Johan Wa Verspuy; Himabindu Gali; Lajos Haracska; Niels de Wind
DNA polymerase zeta is believed to be an essential constituent of DNA damage tolerance, comprising several pathways that allow the replication of DNA templates containing unrepaired damage. We wanted to better define the role of polymerase zeta in DNA damage tolerance in mammalian cells. To this aim we have investigated replication of ultraviolet light-damaged DNA templates in mouse embryonic fibroblasts deficient for Rev3, the catalytic subunit of polymerase zeta. We found that Rev3 is important for a post-replication repair pathway of helix-distorting [6-4]pyrimidine-pyrimidone photoproducts and, to a lesser extent, of cyclobutane pyrimidine dimers. Unlike its partner Rev1, Rev3 appears not to be involved in an immediate translesion synthesis pathway at a stalled replication fork. The deficiency of Rev3(-/-) MEFs in post-replication repair of different photoproducts contributes to the extreme sensitivity of these cells to UV light.
Human Mutation | 2008
Robert M. W. Hofstra; Amanda B. Spurdle; Diana Eccles; William D. Foulkes; Niels de Wind; Nicoline Hoogerbrugge; Frans B. L. Hogervorst
It is important to identify a germline mutation in a patient with an inherited cancer syndrome to allow mutation carriers to be included in cancer surveillance programs, which have been proven to save lives. Many of the mutations identified result in premature termination of translation, and thus in loss‐of‐function of the encoded mutated protein. However, the significance of a large proportion of the sequence changes reported is unknown. Some of these variants will be associated with a high risk of cancer and have direct clinical consequence. Many criteria can be used to classify variants with unknown significance; most criteria are based on the characteristics of the amino acid change, on segregation data and appearance of the variant, on the presence of the variant in controls, or on functional assays. In inherited cancers, tumor characteristics can also be used to classify variants. It is worthwhile to examine the clinical, morphological and molecular features of a patient, and his or her family, when assessing whether the role of a variant is likely to be neutral or pathogenic. Here we describe the advantages and disadvantages of using the tumor characteristics of patients carrying germline variants of uncertain significance (VUS) in BRCA1, BRCA2, or in one of the mismatch repair (MMR) genes, MLH1, MSH2, or MSH6, to infer pathogenicity. Hum Mutat 29(11), 1292–1303, 2008. 2008 Wiley‐Liss, Inc.
The EMBO Journal | 2006
Joyce H.G. Lebbink; Dubravka Georgijevic; Ganesh Natrajan; Alexander Fish; Herrie H. K. Winterwerp; Titia K. Sixma; Niels de Wind
MutS plays a critical role in DNA mismatch repair in Escherichia coli by binding to mismatches and initiating repair in an ATP‐dependent manner. Mutational analysis of a highly conserved glutamate, Glu38, has revealed its role in mismatch recognition by enabling MutS to discriminate between homoduplex and mismatched DNA. Crystal structures of MutS have shown that Glu38 forms a hydrogen bond to one of the mismatched bases. In this study, we have analyzed the crystal structures, DNA binding and the response to ATP binding of three Glu38 mutants. While confirming the role of the negative charge in initial discrimination, we show that in vivo mismatch repair can proceed even when discrimination is low. We demonstrate that the formation of a hydrogen bond by residue 38 to the mismatched base authorizes repair by inducing intramolecular signaling, which results in the inhibition of rapid hydrolysis of distally bound ATP. This allows formation of the stable MutS–ATP–DNA clamp, a key intermediate in triggering downstream repair events.