Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niels Kuster is active.

Publication


Featured researches published by Niels Kuster.


Physics in Medicine and Biology | 2010

The Virtual Family—development of surface-based anatomical models of two adults and two children for dosimetric simulations

Andreas Christ; Wolfgang Kainz; E. G. Hahn; Katharina Honegger; Marcel Zefferer; Esra Neufeld; Wolfgang Rascher; Rolf Janka; W. Bautz; Ji Chen; Berthold Kiefer; Peter Schmitt; Hans Peter Hollenbach; Jianxiang Shen; Michael Oberle; Dominik Szczerba; Anthony W. Kam; Joshua Guag; Niels Kuster

The objective of this study was to develop anatomically correct whole body human models of an adult male (34 years old), an adult female (26 years old) and two children (an 11-year-old girl and a six-year-old boy) for the optimized evaluation of electromagnetic exposure. These four models are referred to as the Virtual Family. They are based on high resolution magnetic resonance (MR) images of healthy volunteers. More than 80 different tissue types were distinguished during the segmentation. To improve the accuracy and the effectiveness of the segmentation, a novel semi-automated tool was used to analyze and segment the data. All tissues and organs were reconstructed as three-dimensional (3D) unstructured triangulated surface objects, yielding high precision images of individual features of the body. This greatly enhances the meshing flexibility and the accuracy with respect to thin tissue layers and small organs in comparison with the traditional voxel-based representation of anatomical models. Conformal computational techniques were also applied. The techniques and tools developed in this study can be used to more effectively develop future models and further improve the accuracy of the models for various applications. For research purposes, the four models are provided for free to the scientific community.


vehicular technology conference | 1992

Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz

Niels Kuster; Quirino Balzano

The energy absorption mechanism in the close near field of dipole antennas is studied by numerical simulations. All computations are performed and validated applying the three-dimensional multiple multipole software package. The numerical model of the plane phantom is additionally checked by accurate as possible experimental measurements. For the plane phantom, the interaction mechanism can be described well by H-field induced surface currents. The spatial peak specific absorption rate can be approximated within 3 dB by a formula given here based on the incident H-field or antenna current and on the conductivity and permittivity of the tissue. These findings can be generalized to heterogeneous tissues and larger biological bodies of arbitrary shape for frequencies above 300 MHz. The specific absorption rate is mainly proportional to the square of the incident H-field, which implies that in the close near field, the spatial peak specific absorption rate is related to the antenna current and not to the input power. >


Journal of Sleep Research | 2002

Electromagnetic fields, such as those from mobile phones, alter regional cerebral blood flow and sleep and waking EEG

Reto Huber; Valerie Treyer; Alexander A. Borbély; Jürgen Schuderer; Julie M. Gottselig; Hans-Peter Landolt; Esther Werth; Thomas Berthold; Niels Kuster; Alfred Buck; Peter Achermann

Usage of mobile phones is rapidly increasing, but there is limited data on the possible effects of electromagnetic field (EMF) exposure on brain physiology. We investigated the effect of EMF vs. sham control exposure on waking regional cerebral blood flow (rCBF) and on waking and sleep electroencephalogram (EEG) in humans. In Experiment 1, positron emission tomography (PET) scans were taken after unilateral head exposure to 30‐min pulse‐modulated 900 MHz electromagnetic field (pm‐EMF). In Experiment 2, night‐time sleep was polysomnographically recorded after EMF exposure. Pulse‐modulated EMF exposure increased relative rCBF in the dorsolateral prefrontal cortex ipsilateral to exposure. Also, pm‐EMF exposure enhanced EEG power in the alpha frequency range prior to sleep onset and in the spindle frequency range during stage 2 sleep. Exposure to EMF without pulse modulation did not enhance power in the waking or sleep EEG. We previously observed EMF effects on the sleep EEG (A. A. Borbély, R. Huber, T. Graf, B. Fuchs, E. Gallmann and P. Achermann. Neurosci. Lett., 1999, 275: 207–210; R. Huber, T. Graf, K. A. Cote, L. Wittmann, E. Gallmann, D. Matter, J. Schuderer, N. Kuster, A. A. Borbély, and P. Achermann. Neuroreport, 2000, 11: 3321–3325), but the basis for these effects was unknown. The present results show for the first time that (1) pm‐EMF alters waking rCBF and (2) pulse modulation of EMF is necessary to induce waking and sleep EEG changes. Pulse‐modulated EMF exposure may provide a new, non‐invasive method for modifying brain function for experimental, diagnostic and therapeutic purposes.


Neuroreport | 2000

Exposure to pulsed high-frequency electromagnetic field during waking affects human sleep EEG.

Reto Huber; Thomas Graf; Kimberly A. Cote; Lutz Wittmann; Eva Gallmann; Daniel Matter; Jürgen Schuderer; Niels Kuster; Alexander A. Borbély; Peter Achermann

The aim of the study was to investigate whether the electro-magnetic field (EMF) emitted by digital radiotelephone handsets affects brain physiology. Healthy, young male subjects were exposed for 30 min to EMF (900 MHz; spatial peak specific absorption rate 1 W/kg) during the waking period preceding sleep. Compared with the control condition with sham exposure, spectral power of the EEG in non-rapid eye movement sleep was increased. The maximum rise occurred in the 9.75–11.25 Hz and 12.5–13.25 Hz band during the initial part of sleep. These changes correspond to those obtained in a previous study where EMF was intermittently applied during sleep. Unilateral exposure induced no hemispheric asymmetry of EEG power. The present results demonstrate that exposure during waking modifies the EEG during subsequent sleep. Thus the changes of brain function induced by pulsed high-frequency EMF outlast the exposure period.


IEEE Transactions on Microwave Theory and Techniques | 1996

The dependence of EM energy absorption upon human head modeling at 900 MHz

Volker Hombach; Klaus Meier; Michael Burkhardt; Eberhard Kuhn; Niels Kuster

The dependence of electromagnetic energy absorption at 900 MHz in the human head on its anatomy and its modeling are investigated for RF-sources operating in the very close proximity of the head. Different numerical head phantoms based on MRI scans of 3 different adults were used with voxel sizes down to 1 mm/sup 3/. Simulations of the absorption were performed by distinguishing the electrical properties of up to 13 tissue types. In addition simulations with modified electric parameters and reduced degrees of complexity were performed. Thus, the phantoms greatly differ from each other in terms of shape, size, and internal anatomy. The numerical results are compared with those of measurements in a multitissue phantom and 2 homogeneous phantoms of different shapes and sizes. The results demonstrate that size and shape are of minor importance, Although local SAR values depend significantly on local inhomogeneities and electric properties, the volume-averaged spatial peak SAR obtained with the homogeneous phantoms only slightly overestimates that of the worst-case exposure in the inhomogeneous phantoms.


IEEE Transactions on Microwave Theory and Techniques | 2000

The dependence of electromagnetic energy absorption upon human head tissue composition in the frequency range of 300-3000 MHz

Antonios Drossos; Veli Santomaa; Niels Kuster

The requirements for testing compliance of cellular phones with electromagnetic safety limits demand evaluation of the maximum exposure that may occur in the user group under normal operational conditions. Under these conditions, the tissues of the ear region are most exposed, the tissue composition of which is complex and varies considerably from user to user. The objective of this paper is to derive head tissue equivalent dielectric parameters that enable the utilization of one generic homogeneous head for testing compliance for the entire user group, i.e., granting no underestimation, but also not greatly overestimating the actual maximum user exposure. As a primary study, a simple analytical model of an infinite half-space layered tissue model exposed to a plane wave was utilized to investigate the impact of impedance matching standing waves, etc. On the spatial-peak specific absorption rate. The tissue layers were varied in composition and thickness, representing the anatomical variation of the exposed head region covering the user group including adults and children ( 90% percentile). Based on the worst-case tissue layer compositions with respect to absorption at each frequency, head tissue equivalent dielectric parameters for homogeneous modeling were derived, which result in the same spatial-peak absorption. The validity of this approach for near-field exposures was demonstrated by replacing the plane wave by different near-field sources (dipoles and generic phones) and the layered structure with magnetic-resonance-image-based nonhomogeneous human head models.


IEEE Transactions on Microwave Theory and Techniques | 1996

Automated E-field scanning system for dosimetric assessments

Thomas Schmid; Oliver Egger; Niels Kuster

The interest in accurate dosimetric measurements inside phantoms that simulate biological bodies has burgeoned since several regulatory commissions began calling for or recommending the testing for compliance with safety standards of low power devices. This paper presents a newly developed, robot-based system that allows automated E-field scanning in tissue simulating solutions. The distinguishing characteristics of the system are its high sensitivity and its broad dynamic range (1 /spl mu/W/g to 100 mW/g) over the entire frequency range (10 MHz to over 3 GHz) used for mobile communications. The reproducibility of the dosimetric evaluations has been shown to be considerably better than /spl plusmn/5%. This has been accomplished by the use of an improved isotropic E-field probe connected to amplifiers with extremely low noise and drift characteristics in conjunction with digital processing of the data. Special emphasis has been placed on system reliability, user-friendliness and graphic visualization of data.


Health Physics | 1998

Differences in energy absorption between heads of adults and children in the near field of sources.

Frank Schönborn; Michael Burkhardt; Niels Kuster

This paper was motivated by a recent article in which the levels of electromagnetic energy absorbed in the heads of mobile phone users were compared for children and adults at the frequencies of 835 MHz and 1,900 MHz. Significant differences were found, in particular substantially greater absorption in childrens heads at 835 MHz. These findings contradict other studies in which no significant changes had been postulated. The clarification of this issue is crucial to the mobile communications industry since current SAR evaluations as required by the FCC are only performed with phantoms based on the heads of adults. In order to investigate the differences in absorption between adults and children due to their differing anatomies, simulations have been performed using head phantoms based on MRI scans of an adult (voxel size 2 x 2 x 1 mm3) and two children (voxel size 2 x 2 x 1.1 mm3) of the ages of 3 and 7 y. Ten different tissue types were distinguished. The differences in absorption were investigated for the frequencies of 900 MHz and 1,800 MHz using 0.45 lambda dipoles instead of actual mobile phones. These well-defined sources simplified the investigation and facilitated the comparison to previously published data obtained from several numerical and experimental studies on phantoms based on adults. All simulations were performed using a commercial code based on the finite integration technique. The results revealed no significant differences in the absorption of electromagnetic radiation in the near field of sources between adults and children. The same conclusion holds when children are approximated as scaled adults.


European Journal of Neuroscience | 2005

Exposure to pulse‐modulated radio frequency electromagnetic fields affects regional cerebral blood flow

Reto Huber; Valerie Treyer; Jürgen Schuderer; Thomas Berthold; Alfred Buck; Niels Kuster; Hans-Peter Landolt; Peter Achermann

We investigated the effects of radio frequency electromagnetic fields (RF EMF) similar to those emitted by mobile phones on waking regional cerebral blood flow (rCBF) in 12 healthy young men. Two types of RF EMF exposure were applied: a ‘base‐station‐like’ and a ‘handset‐like’ signal. Positron emission tomography scans were taken after 30 min unilateral head exposure to pulse‐modulated 900 MHz RF EMF (10 g tissue‐averaged spatial peak‐specific absorption rate of 1 W/kg for both conditions) and sham control. We observed an increase in relative rCBF in the dorsolateral prefrontal cortex on the side of exposure. The effect depended on the spectral power in the amplitude modulation of the RF carrier such that only ‘handset‐like’ RF EMF exposure with its stronger low‐frequency components but not the ‘base‐station‐like’ RF EMF exposure affected rCBF. This finding supports our previous observation that pulse modulation of RF EMF is necessary to induce changes in the waking and sleep EEG, and substantiates the notion that pulse modulation is crucial for RF EMF‐induced alterations in brain physiology.


IEEE Transactions on Electromagnetic Compatibility | 2006

Comparisons of computed mobile phone induced SAR in the SAM phantom to that in anatomically correct models of the human head

Brian B. Beard; Wolfgang Kainz; Teruo Onishi; Takahiro Iyama; Soichi Watanabe; Osamu Fujiwara; Jianqing Wang; Giorgi Bit-Babik; Antonio Faraone; Joe Wiart; Andreas Christ; Niels Kuster; Ae-Kyoung Lee; Hugo Kroeze; Martin Siegbahn; Jafar Keshvari; Houman Abrishamkar; Winfried Simon; Dirk Manteuffel; Neviana Nikoloski

The specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, Sub-Committee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol. The results show that when the pinna SAR is calculated separately from the head SAR, SAM produced a higher SAR in the head than the anatomically correct head models. Also the larger (adult) head produced a statistically significant higher peak SAR for both the 1- and 10-g averages than did the smaller (child) head for all conditions of frequency and position.

Collaboration


Dive into the Niels Kuster's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Christ

University of Applied Sciences Offenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfgang Kainz

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuel Murbach

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theodoros Samaras

Aristotle University of Thessaloniki

View shared research outputs
Researchain Logo
Decentralizing Knowledge