Niels Lion
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Niels Lion.
Journal of Biological Chemistry | 2012
Bruno Fauvet; Martial K. Mbefo; Mohamed-Bilal Fares; Carole Desobry; Sarah Michael; Mustafa T. Ardah; Elpida Tsika; Philippe Coune; Michel Prudent; Niels Lion; David Eliezer; Darren J. Moore; Bernard L. Schneider; Patrick Aebischer; Omar M. A. El-Agnaf; Eliezer Masliah; Hilal A. Lashuel
Background: The oligomeric state of α-syn in vivo remains unknown. Results: α-syn in the CNS and produced by erythrocytes, mammalian cells, and Escherichia coli exists predominantly as a disordered monomer. Conclusion: Native α-syn from various sources behaves as unstructured and monomeric. Significance: Stabilizing monomeric α-syn, lowering its levels, and/or inhibiting its fibrillization remain viable therapeutic strategies for Parkinson disease. Since the discovery and isolation of α-synuclein (α-syn) from human brains, it has been widely accepted that it exists as an intrinsically disordered monomeric protein. Two recent studies suggested that α-syn produced in Escherichia coli or isolated from mammalian cells and red blood cells exists predominantly as a tetramer that is rich in α-helical structure (Bartels, T., Choi, J. G., and Selkoe, D. J. (2011) Nature 477, 107–110; Wang, W., Perovic, I., Chittuluru, J., Kaganovich, A., Nguyen, L. T. T., Liao, J., Auclair, J. R., Johnson, D., Landeru, A., Simorellis, A. K., Ju, S., Cookson, M. R., Asturias, F. J., Agar, J. N., Webb, B. N., Kang, C., Ringe, D., Petsko, G. A., Pochapsky, T. C., and Hoang, Q. Q. (2011) Proc. Natl. Acad. Sci. 108, 17797–17802). However, it remains unknown whether or not this putative tetramer is the main physiological form of α-syn in the brain. In this study, we investigated the oligomeric state of α-syn in mouse, rat, and human brains. To assess the conformational and oligomeric state of native α-syn in complex mixtures, we generated α-syn standards of known quaternary structure and conformational properties and compared the behavior of endogenously expressed α-syn to these standards using native and denaturing gel electrophoresis techniques, size-exclusion chromatography, and an oligomer-specific ELISA. Our findings demonstrate that both human and rodent α-syn expressed in the central nervous system exist predominantly as an unfolded monomer. Similar results were observed when human α-syn was expressed in mouse and rat brains as well as mammalian cell lines (HEK293, HeLa, and SH-SY5Y). Furthermore, we show that α-syn expressed in E. coli and purified under denaturing or nondenaturing conditions, whether as a free protein or as a fusion construct with GST, is monomeric and adopts a disordered conformation after GST removal. These results do not rule out the possibility that α-syn becomes structured upon interaction with other proteins and/or biological membranes.
Vox Sanguinis | 2008
Olivier Rubin; David Crettaz; G. Canellini; Jean-Daniel Tissot; Niels Lion
Background and Objectives Microparticles (MPs) are small phospholipid vesicles of less than 1 µm, shed in blood flow by various cell types. These MPs are involved in several biological processes and diseases. MPs have also been detected in blood products; however, their role in transfused patients is unknown. The purpose of this study was to characterize those MPs in blood bank conditions.
Journal of Chromatography A | 2003
Niels Lion; Jean-Olivier Gellon; Henrik Jensen; Hubert H. Girault
A membrane-based desalting step integrated in a MS microchip is presented: drugs, peptides and proteins are adsorbed on a hydrophobic poly(vinylidene difluoride) membrane, which allows the washing out of salts. The integration with microfluidics permits a controlled elution of analytes from the membrane and their direct mass spectrometric analysis by electrospray ionisation MS. The desalting process is demonstrated with picomole amounts of propanolol, insulin and cytochrome c. Moreover, this stop-and-go desalting process is tolerant to high concentrations of urea, and to the presence of reductants such as dithiothreitol. This particular feature allowed the chemical tagging of cysteines in beta-lactoglobulin A with iodoacetamide. Finally, the integration of chemical tagging, on-chip desalting and MS microchip paves the way for the development of high-throughput analytical procedure for structural proteomics.
Transfusion | 2013
Olivier Rubin; Julien Delobel; Michel Prudent; Niels Lion; Kid Kohl; Erik I. Tucker; Jean-Daniel Tissot; Anne Angelillo-Scherrer
Red blood cell–derived microparticles (RMPs) are small phospholipid vesicles shed from RBCs in blood units, where they accumulate during storage. Because microparticles are bioactive, it could be suggested that RMPs are mediators of posttransfusion complications or, on the contrary, constitute a potential hemostatic agent.
Journal of Proteomics | 2010
Niels Lion; David Crettaz; Olivier Rubin; Jean-Daniel Tissot
The availability of stored red blood cells (RBCs) for transfusion remains an important aspect of the treatment of polytrauma, acute anemia or major bleedings. RBCs are prepared by blood banks from whole blood donations and stored in the cold in additive solutions for typically six weeks. These far from physiological storage conditions result in the so-called red cell storage lesion that is of importance both to blood bankers and to clinical practitioners. Here we review the current state of knowledge about the red cell storage lesion from a proteomic perspective. In particular, we describe the current models accounting for RBC aging and response to lethal stresses, review the published proteomic studies carried out to uncover the molecular basis of the RBC storage lesion, and conclude by suggesting a few possible proteomic studies that would provide further knowledge of the molecular alterations carried by RBCs stored in the cold for six weeks.
Physical Chemistry Chemical Physics | 2004
Tatiana C. Rohner; Niels Lion; Hubert H. Girault
An overview of the electrospray processes is given and discussed, from the formation and the onset of the spray to the generation of gas-phase ions. This soft ionisation method for mass spectrometry is indeed characterized by non-equilibrium conditions, and the striking features relative to its use are difficult to be analytically or numerically modelled or even observed. In particular, the ionisation model known as the “ion evaporation model” will be largely discussed and its relevance with respect to the other model for gas-phase ions generation, the “charge residue model” will be highlighted. Lastly, the influence of the species nature and respective concentrations in the sprayed solution will be reviewed.
Blood Reviews | 2014
Julie Kaiser-Guignard; Giorgia Canellini; Niels Lion; Mélanie Abonnenc; Jean-Claude Osselaer; Jean-Daniel Tissot
Since 1990, several techniques have been developed to photochemically inactivate pathogens in platelet concentrates, potentially leading to safer transfusion therapy. The three most common methods are amotosalen/UVA (INTERCEPT Blood System), riboflavin/UVA-UVB (MIRASOL PRT), and UVC (Theraflex-UV). We review the biology of pathogen inactivation methods, present their efficacy in reducing pathogens, discuss their impact on the functional aspects of treated platelets, and review clinical studies showing the clinical efficiency of the pathogen inactivation methods and their possible toxicity.
Journal of Proteomics | 2012
Julien Delobel; Michel Prudent; Olivier Rubin; David Crettaz; Jean-Daniel Tissot; Niels Lion
During blood banking, erythrocytes undergo storage lesions, altering or degrading their metabolism, rheological properties, and protein content. Carbonylation is a hallmark of protein oxidative lesions, thus of red blood cell oxidative stress. In order to improve global erythrocyte protein carbonylation assessment, subcellular fractionation has been established, allowing us to work on four different protein populations, namely soluble hemoglobin, hemoglobin-depleted soluble fraction, integral membrane and cytoskeleton membrane protein fractions. Carbonylation in erythrocyte-derived microparticles has also been investigated. Carbonylated proteins were derivatized with 2,4-dinitrophenylhydrazine (2,4-DNPH) and quantified by western blot analyses. In particular, carbonylation in the cytoskeletal membrane fraction increased remarkably between day 29 and day 43 (P<0.01). Moreover, protein carbonylation within microparticles released during storage showed a two-fold increase along the storage period (P<0.01). As a result, carbonylation of cytoplasmic and membrane protein fractions differs along storage, and the present study allows explaining two distinct steps in global erythrocyte protein carbonylation evolution during blood banking. This article is part of a Special Issue entitled: Integrated omics.
Transfusion Medicine Reviews | 2014
Michel Prudent; Angelo D’Alessandro; Jean-Pierre Cazenave; Dana V. Devine; Christian Gachet; Andreas Greinacher; Niels Lion; Peter Schubert; Leif Steil; Thomas Thiele; Jean-Daniel Tissot; Uwe Völker; Lello Zolla
Pathogen inactivation (PI) of platelet concentrates (PCs) reduces the proliferation/replication of a large range of bacteria, viruses, and parasites as well as residual leucocytes. Pathogen-inactivated PCs were evaluated in various clinical trials showing their efficacy and safety. Today, there is some debate over the hemostatic activity of treated PCs as the overall survival of PI platelets seems to be somewhat reduced, and in vitro measurements have identified some alterations in platelet function. Although the specific lesions resulting from PI of PCs are still not fully understood, proteomic studies have revealed potential damages at the protein level. This review merges the key findings of the proteomic analyses of PCs treated by the Mirasol Pathogen Reduction Technology, the Intercept Blood System, and the Theraflex UV-C system, respectively, and discusses the potential impact on the biological functions of platelets. The complementarities of the applied proteomic approaches allow the coverage of a wide range of proteins and provide a comprehensive overview of PI-mediated protein damage. It emerges that there is a relatively weak impact of PI on the overall proteome of platelets. However, some data show that the different PI treatments lead to an acceleration of platelet storage lesions, which is in agreement with the current model of platelet storage lesion in pathogen-inactivated PCs. Overall, the impact of the PI treatment on the proteome appears to be different among the PI systems. Mirasol impacts adhesion and platelet shape change, whereas Intercept seems to impact proteins of intracellular platelet activation pathways. Theraflex influences platelet shape change and aggregation, but the data reported to date are limited. This information provides the basis to understand the impact of different PI on the molecular mechanisms of platelet function. Moreover, these data may serve as basis for future developments of PI technologies for PCs. Further studies should address the impact of both the PI and the storage duration on platelets in PCs because PI may enable the extension of the shelf life of PCs by reducing the bacterial contamination risk.
Talanta | 2010
Olivier Rubin; David Crettaz; Jean-Daniel Tissot; Niels Lion
Microparticles are phospholipid vesicles shed mostly in biological fluids, such as blood or urine, by various types of cells, such as red blood cells (RBCs), platelets, lymphocytes, endothelial cells. These microparticles contain a subset of the proteome of their parent cell, and their ready availability in biological fluid has raised strong interest in their study, as they might be markers of cell damage. However, their small size as well as their particular physico-chemical properties makes them hard to detect, size, count and study by proteome analysis. In this review, we report the pre-analytical and methodological caveats that we have faced in our own research about red blood cell microparticles in the context of transfusion science, as well as examples from the literature on the proteomics of various kinds of microparticles.