Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niema Ibrahim is active.

Publication


Featured researches published by Niema Ibrahim.


Genome Biology | 2015

Identification of embryonic lethal genes in humans by autozygosity mapping and exome sequencing in consanguineous families

Hanan E. Shamseldin; Maha Tulbah; Wesam Kurdi; Maha Nemer; Nada Alsahan; Elham Al Mardawi; Ola Khalifa; Amal Hashem; Ahmed M. Kurdi; Zainab Babay; Dalal K. Bubshait; Niema Ibrahim; Firdous Abdulwahab; Zuhair Rahbeeni; Mais Hashem; Fowzan S. Alkuraya

BackgroundIdentifying genetic variants that lead to discernible phenotypes is the core of Mendelian genetics. An approach that considers embryonic lethality as a bona fide Mendelian phenotype has the potential to reveal novel genetic causes, which will further our understanding of early human development at a molecular level. Consanguineous families in which embryonic lethality segregates as a recessive Mendelian phenotype offer a unique opportunity for high throughput novel gene discovery as has been established for other recessive postnatal phenotypes.ResultsWe have studied 24 eligible families using autozygosity mapping and whole-exome sequencing. In addition to revealing mutations in genes previously linked to embryonic lethality in severe cases, our approach revealed seven novel candidate genes (THSD1, PIGC, UBN1, MYOM1, DNAH14, GALNT14, and FZD6). A founder mutation in one of these genes, THSD1, which has been linked to vascular permeability, accounted for embryonic lethality in three of the study families. Unlike the other six candidate genes, we were able to identify a second mutation in THSD1 in a family with a less severe phenotype consisting of hydrops fetalis and persistent postnatal edema, which provides further support for the proposed link between this gene and embryonic lethality.ConclusionsOur study represents an important step towards the systematic analysis of “embryonic lethal genes” in humans.


American Journal of Human Genetics | 2013

Mutations in MEOX1, encoding mesenchyme homeobox 1, cause Klippel-Feil anomaly.

Jawahir Y. Mohamed; Eissa Faqeih; Abdulmonem Alsiddiky; Muneera J. Alshammari; Niema Ibrahim; Fowzan S. Alkuraya

Klippel-Feil syndrome (KFS) is a segmentation malformation of the cervical spine; clinically, it manifests as a short neck with reduced mobility and a low posterior hairline. Several genes have been proposed as candidates for KFS when it is present with other associated anomalies, but the genetics of isolated KFS have been difficult to study because of the syndromes mostly sporadic occurrence. We describe a multiplex consanguineous family in which isolated KFS maps to a single 17q21.31 locus that harbors a homozygous frameshift deletion in MEOX1; this deletion results in complete instability of the transcript. Direct sequencing of this gene in two siblings from another consanguineous family affected by isolated KFS uncovered another homozygous truncating (nonsense) MEOX1 mutation that also leads to complete degradation of the transcript. This gene encodes a transcription factor with a well-established and nonredundant role in somite development, and homozygous null alleles of Meox1 in mice have a cervical skeletal defect that is remarkably similar to the one we observe in human individuals with MEOX1 mutations. Our data strongly suggest that KFS is the human phenotypic equivalent of the sclerotome polarity defect that results from Meox1 deficiency in mice.


Molecular Psychiatry | 2017

Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield

Shamsa Anazi; Sateesh Maddirevula; Eissa Faqeih; Haifa Alsedairy; F. Alzahrani; Hanan E. Shamseldin; Nisha A. Patel; Mais Hashem; Niema Ibrahim; Firdous Abdulwahab; Nour Ewida; Hessa S. Alsaif; H Al sharif; W Alamoudi; Amal Y. Kentab; Fahad A. Bashiri; M Alnaser; Ali H. Alwadei; Majid Alfadhel; Wafaa Eyaid; Amal Hashem; A Al Asmari; Marwa Saleh; Abdulaziz Alsaman; K A Alhasan; M Alsughayir; M Al Shammari; Adel Mahmoud; Zuhair Al-Hassnan; Muneera Al-Husain

Intellectual disability (ID) is a measurable phenotypic consequence of genetic and environmental factors. In this study, we prospectively assessed the diagnostic yield of genomic tools (molecular karyotyping, multi-gene panel and exome sequencing) in a cohort of 337 ID subjects as a first-tier test and compared it with a standard clinical evaluation performed in parallel. Standard clinical evaluation suggested a diagnosis in 16% of cases (54/337) but only 70% of these (38/54) were subsequently confirmed. On the other hand, the genomic approach revealed a likely diagnosis in 58% (n=196). These included copy number variants in 14% (n=54, 15% are novel), and point mutations revealed by multi-gene panel and exome sequencing in the remaining 43% (1% were found to have Fragile-X). The identified point mutations were mostly recessive (n=117, 81%), consistent with the high consanguinity of the study cohort, but also X-linked (n=8, 6%) and de novo dominant (n=19, 13%). When applied directly on all cases with negative molecular karyotyping, the diagnostic yield of exome sequencing was 60% (77/129). Exome sequencing also identified likely pathogenic variants in three novel candidate genes (DENND5A, NEMF and DNHD1) each of which harbored independent homozygous mutations in patients with overlapping phenotypes. In addition, exome sequencing revealed de novo and recessive variants in 32 genes (MAMDC2, TUBAL3, CPNE6, KLHL24, USP2, PIP5K1A, UBE4A, TP53TG5, ATOH1, C16ORF90, SLC39A14, TRERF1, RGL1, CDH11, SYDE2, HIRA, FEZF2, PROCA1, PIANP, PLK2, QRFPR, AP3B2, NUDT2, UFC1, BTN3A2, TADA1, ARFGEF3, FAM160B1, ZMYM5, SLC45A1, ARHGAP33 and CAPS2), which we highlight as potential candidates on the basis of several lines of evidence, and one of these genes (SLC39A14) was biallelically inactivated in a potentially treatable form of hypermanganesemia and neurodegeneration. Finally, likely causal variants in previously published candidate genes were identified (ASTN1, HELZ, THOC6, WDR45B, ADRA2B and CLIP1), thus supporting their involvement in ID pathogenesis. Our results expand the morbid genome of ID and support the adoption of genomics as a first-tier test for individuals with ID.


Genetics in Medicine | 2016

Expanding the clinical, allelic, and locus heterogeneity of retinal dystrophies

Nisha A. Patel; Mohammed A. Aldahmesh; Hisham Alkuraya; Shamsa Anazi; Hadeel Alsharif; Arif O. Khan; Asma Sunker; Al-Mohsen S; Emad B. Abboud; Nowilaty; Mohammed Al-Owain; Hamad Al-Zaidan; Al-Saud B; Ali Alasmari; Abdel-Salam Gm; Mohamed Abouelhoda; Firdous Abdulwahab; Niema Ibrahim; Ewa A. Naim; Banan Al-Younes; AlIssa A; Mais Hashem; Olga Buzovetsky; Yong Xiong; Dorota Monies; Nada A. Al-Tassan; Ranad Shaheen; Selwa A.F. Al-Hazzaa; Fowzan S. Alkuraya

Purpose:Retinal dystrophies (RD) are heterogeneous hereditary disorders of the retina that are usually progressive in nature. The aim of this study was to clinically and molecularly characterize a large cohort of RD patients.Methods:We have developed a next-generation sequencing assay that allows known RD genes to be sequenced simultaneously. We also performed mapping studies and exome sequencing on familial and on syndromic RD patients who tested negative on the panel.Results:Our panel identified the likely causal mutation in >60% of the 292 RD families tested. Mapping studies on all 162 familial RD patients who tested negative on the panel identified two novel disease loci on Chr2:25,550,180-28,794,007 and Chr16:59,225,000-72,511,000. Whole-exome sequencing revealed the likely candidate as AGBL5 and CDH16, respectively. We also performed exome sequencing on negative syndromic RD cases and identified a novel homozygous truncating mutation in GNS in a family with the novel combination of mucopolysaccharidosis and RD. Moreover, we identified a homozygous truncating mutation in DNAJC17 in a family with an apparently novel syndrome of retinitis pigmentosa and hypogammaglobulinemia.Conclusion:Our study expands the clinical and allelic spectrum of known RD genes, and reveals AGBL5, CDH16, and DNAJC17 as novel disease candidates.Genet Med 18 6, 554–562.


Genome Biology | 2016

Characterizing the morbid genome of ciliopathies

Ranad Shaheen; Katarzyna Szymanska; Basudha Basu; Nisha Patel; Nour Ewida; Eissa Faqeih; Amal Hashem; Nada Derar; Hadeel Alsharif; Mohammed A. Aldahmesh; Anas M. Alazami; Mais Hashem; Niema Ibrahim; Firdous Abdulwahab; Rawda Sonbul; Hisham Alkuraya; Maha Alnemer; Saeed Al Tala; Muneera Al-Husain; Heba Morsy; Mohammed Zain Seidahmed; Neama Meriki; Mohammed Al-Owain; Saad AlShahwan; Brahim Tabarki; Mustafa A. Salih; Ciliopathy WorkingGroup; Tariq Faquih; Mohamed El-Kalioby; Marius Ueffing

BackgroundCiliopathies are clinically diverse disorders of the primary cilium. Remarkable progress has been made in understanding the molecular basis of these genetically heterogeneous conditions; however, our knowledge of their morbid genome, pleiotropy, and variable expressivity remains incomplete.ResultsWe applied genomic approaches on a large patient cohort of 371 affected individuals from 265 families, with phenotypes that span the entire ciliopathy spectrum. Likely causal mutations in previously described ciliopathy genes were identified in 85% (225/265) of the families, adding 32 novel alleles. Consistent with a fully penetrant model for these genes, we found no significant difference in their “mutation load” beyond the causal variants between our ciliopathy cohort and a control non-ciliopathy cohort. Genomic analysis of our cohort further identified mutations in a novel morbid gene TXNDC15, encoding a thiol isomerase, based on independent loss of function mutations in individuals with a consistent ciliopathy phenotype (Meckel-Gruber syndrome) and a functional effect of its deficiency on ciliary signaling. Our study also highlighted seven novel candidate genes (TRAPPC3, EXOC3L2, FAM98C, C17orf61, LRRCC1, NEK4, and CELSR2) some of which have established links to ciliogenesis. Finally, we show that the morbid genome of ciliopathies encompasses many founder mutations, the combined carrier frequency of which accounts for a high disease burden in the study population.ConclusionsOur study increases our understanding of the morbid genome of ciliopathies. We also provide the strongest evidence, to date, in support of the classical Mendelian inheritance of Bardet-Biedl syndrome and other ciliopathies.


Human Molecular Genetics | 2015

Identification of a novel MKS locus defined by TMEM107 mutation

Ranad Shaheen; Agaadir Almoisheer; Eissa Faqeih; Zainab Babay; Dorota Monies; Nada Al Tassan; Mohamed Abouelhoda; Wesam Kurdi; Elham Al Mardawi; Mohamed M.I. Khalil; Mohammed Zain Seidahmed; Maha Alnemer; Nada Alsahan; Samira Sogaty; Amal Alhashem; Ankur Singh; Manisha Goyal; Seema Kapoor; Rana Alomar; Niema Ibrahim; Fowzan S. Alkuraya

Meckel-Gruber syndrome (MKS) is a perinatally lethal disorder characterized by the triad of occipital encephalocele, polydactyly and polycystic kidneys. Typical of other disorders related to defective primary cilium (ciliopathies), MKS is genetically heterogeneous with mutations in a dozen genes to date known to cause the disease. In an ongoing effort to characterize MKS clinically and genetically, we implemented a gene panel and next-generation sequencing approach to identify the causal mutation in 25 MKS families. Of the three families that did not harbor an identifiable causal mutation by this approach, two mapped to a novel disease locus in which whole-exome sequencing revealed the likely causal mutation as a homozygous splicing variant in TMEM107, which we confirm leads to aberrant splicing and nonsense-mediated decay. TMEM107 had been independently identified in two mouse models as a cilia-related protein and mutant mice display typical ciliopathy phenotypes. Our analysis of patient fibroblasts shows marked ciliogenesis defect with an accompanying perturbation of sonic hedgehog signaling, highly concordant with the cellular phenotype in Tmem107 mutants. This study shows that known MKS loci account for the overwhelming majority of MKS cases but additional loci exist including MKS13 caused by TMEM107 mutation.


Genetics in Medicine | 2017

Increasing the sensitivity of clinical exome sequencing through improved filtration strategy

Hanan E. Shamseldin; Sateesh Maddirevula; Eissa Faqeih; Niema Ibrahim; Mais Hashem; Ranad Shaheen; Fowzan S. Alkuraya

Background:Clinical exome sequencing (CES) has greatly improved the diagnostic process for individuals with suspected genetic disorders. However, the majority remains undiagnosed after CES. Although understanding potential reasons for this limited sensitivity is critical for improving the delivery of clinical genomics, research in this area has been limited.Materials and Methods:We first calculated the theoretical maximum sensitivity of CES by analyzing >100 families in whom a Mendelian phenotype is mapped to a single locus. We then tested the hypothesis that positional mapping can limit the search space and thereby facilitate variant interpretation by reanalyzing 33 families with “negative” CES and applying positional mapping.Results:We found that >95% of families who map to a single locus harbored genic (as opposed to intergenic) variants that are potentially identifiable by CES. Our reanalysis of “negative” CES revealed likely causal variants in the majority (88%). Several of these solved cases have undergone negative whole-genome sequencing.Conclusion:The discrepancy between the theoretical maximum and the actual clinical sensitivity of CES is primarily in the variant filtration rather than the variant capture and sequencing phase. The solution to negative CES is not necessarily in expanding the coverage but rather in devising approaches that improve variant filtration. We suggest that positional mapping is one such approach.Genet Med advance online publication 06 October 2016


Genetics in Medicine | 2016

Accelerating matchmaking of novel dysmorphology syndromes through clinical and genomic characterization of a large cohort

Ranad Shaheen; Nisha Patel; Hanan E. Shamseldin; Fatema Alzahrani; Ruah Al-Yamany; Agaadir Almoisheer; Nour Ewida; Shamsa Anazi; Maha Alnemer; Mohamed Elsheikh; Khaled Alfaleh; Muneera J. Alshammari; Amal Alhashem; Abdullah A. Alangari; Mustafa A. Salih; Martin Kircher; Riza Daza; Niema Ibrahim; Salma M. Wakil; Ahmed Alaqeel; Ikhlas Altowaijri; Jay Shendure; Amro Al-Habib; Eissa Faqieh; Fowzan S. Alkuraya

Purpose:Dysmorphology syndromes are among the most common referrals to clinical genetics specialists. Inability to match the dysmorphology pattern to a known syndrome can pose a major diagnostic challenge. With an aim to accelerate the establishment of new syndromes and their genetic etiology, we describe our experience with multiplex consanguineous families that appeared to represent novel autosomal recessive dysmorphology syndromes at the time of evaluation.Methods:Combined autozygome/exome analysis of multiplex consanguineous families with apparently novel dysmorphology syndromes.Results:Consistent with the apparent novelty of the phenotypes, our analysis revealed a strong candidate variant in genes that were novel at the time of the analysis in the majority of cases, and 10 of these genes are published here for the first time as novel candidates (CDK9, NEK9, ZNF668, TTC28, MBL2, CADPS, CACNA1H, HYAL2, CTU2, and C3ORF17). A significant minority of the phenotypes (6/31, 19%), however, were caused by genes known to cause Mendelian phenotypes, thus expanding the phenotypic spectrum of the diseases linked to these genes. The conspicuous inheritance pattern and the highly specific phenotypes appear to have contributed to the high yield (90%) of plausible molecular diagnoses in our study cohort.Conclusion:Reporting detailed clinical and genomic analysis of a large series of apparently novel dysmorphology syndromes will likely lead to a trend to accelerate the establishment of novel syndromes and their underlying genes through open exchange of data for the benefit of patients, their families, health-care providers, and the research community.Genet Med 18 7, 686–695.


Gut | 2014

Study of Mendelian forms of Crohn's disease in Saudi Arabia reveals novel risk loci and alleles

Nisha Patel; Mohammad Issa El Mouzan; Sulaiman M. Al-Mayouf; Nouran Adly; Jawahir Y. Mohamed; Mohammad Al Mofarreh; Niema Ibrahim; Yong Xiong; Qi Zhao; Khalid Alsaleem; Fowzan S. Alkuraya

Sir, We read with interest the article by Uhlig on the Mendelian forms of IBD.1 Mendelian forms of Crohns disease (CD) are rare but can establish a causal link that is not usually possible by the genome-wide association study (GWAS) design. In order to accelerate the discovery of Mendelian CD, we recruited four cooperative families in which the healthy consanguineous parents had at least two affected children with early onset CD (<10 years of age), consistent with autosomal recessive inheritance (see online supplementary figure S1). With informed consent according to an Institutional Review Board approved protocol (KFSHRC RAC# 2121053), we proceeded with autozygosity mapping using AgileMultiIdeogram (http://dna.leeds.ac.uk/agile/AgileMultiIdeogram/) followed by whole-exome sequencing (WES) as previously described.2 Online supplementary table S1 shows the iterative filtering of the resulting variants based on homozygosity, predicted pathogenicity, location within the autozygome and novelty. Family 1 consists of first cousin parents, four affected and seven unaffected children. The four affected children presented with a remarkably similar clinical picture that consists of early onset IBD and severe and debilitating arthropathy. The four affected siblings shared …


Genetics in Medicine | 2017

Molecular autopsy in maternal-fetal medicine

Hanan E. Shamseldin; Wesam Kurdi; Fatima Almusafri; Maha Alnemer; Alya Alkaff; Zeneb Babay; Amal Alhashem; Maha Tulbah; Nada Alsahan; Rubina Khan; Bahauddin Sallout; Elham Al Mardawi; Mohamed Zain Seidahmed; Niema Meriki; Yasser Alsaber; Alya Qari; Ola Khalifa; Wafaa Eyaid; Zuhair Rahbeeni; Ahmed M. Kurdi; Mais Hashem; Tarfa Alshidi; Eman Alobeid; Firdous Abdulwahab; Niema Ibrahim; Nour Ewida; Karen El-Akouri; Mariam Al Mulla; Tawfeg Ben-Omran; Matthias Pergande

PurposeThe application of genomic sequencing to investigate unexplained death during early human development, a form of lethality likely enriched for severe Mendelian disorders, has been limited.MethodsIn this study, we employed exome sequencing as a molecular autopsy tool in a cohort of 44 families with at least one death or lethal fetal malformation at any stage of in utero development. Where no DNA was available from the fetus, we performed molecular autopsy by proxy, i.e., through parental testing.ResultsPathogenic or likely pathogenic variants were identified in 22 families (50%), and variants of unknown significance were identified in further 15 families (34%). These variants were in genes known to cause embryonic or perinatal lethality (ALPL, GUSB, SLC17A5, MRPS16, THSD1, PIEZO1, and CTSA), genes known to cause Mendelian phenotypes that do not typically include embryonic lethality (INVS, FKTN, MYBPC3, COL11A2, KRIT1, ASCC1, NEB, LZTR1, TTC21B, AGT, KLHL41, GFPT1, and WDR81) and genes with no established links to human disease that we propose as novel candidates supported by embryonic lethality of their orthologs or other lines of evidence (MS4A7, SERPINA11, FCRL4, MYBPHL, PRPF19, VPS13D, KIAA1109, MOCS3, SVOPL, FEN1, HSPB11, KIF19, and EXOC3L2).ConclusionOur results suggest that molecular autopsy in pregnancy losses is a practical and high-yield alternative to traditional autopsy, and an opportunity for bringing precision medicine to the clinical practice of perinatology.

Collaboration


Dive into the Niema Ibrahim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eissa Faqeih

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Nisha Patel

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dorota Monies

King Abdulaziz City for Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge