Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niema M. Pahlevan is active.

Publication


Featured researches published by Niema M. Pahlevan.


Journal of The American Society of Echocardiography | 2010

Color Doppler jet area overestimates regurgitant volume when multiple jets are present

Ben A. Lin; Arian S. Forouhar; Niema M. Pahlevan; Costas A. Anastassiou; Paul A. Grayburn; James D. Thomas; Morteza Gharib

BACKGROUND Color Doppler jet area (CDJA) is an important measure used to classify mitral regurgitation (MR) severity. The investigators hypothesized that the presence and configuration of multiple regurgitant jets can alter CDJA quantification for fixed regurgitant volumes. This has relevance to MR assessment prior to the treatment of valves with multiple regurgitant orifices or after surgical or percutaneous double-orifice mitral valve repair. METHODS An in vitro model was developed to create jets flowing through a simulated mitral orifice into an imaging chamber. The flow loop was driven with a pulsatile pump at 60 beats/min containing a water-glycerol solution approximating the viscosity of blood. At the orifice, simulated regurgitant stroke volumes of 2.5 to 25 mL were created through plates having either single openings with orifice areas from 0.125 to 0.50 cm(2) or two to four openings with total orifice area of 0.25 cm(2) and varied linear spacing. An 8-MHz transthoracic two-dimensional ultrasound probe was used to acquire jet velocities by continuous-wave Doppler as well as color Doppler for offline analysis. CDJA values were obtained with custom automated pixel-counting software. RESULTS Peak jet velocities ranged from 30 to 550 cm/sec. For single jets, normalized average CDJA values increased nonlinearly as a function of average Reynolds number. Peak CDJA values were up to 62% higher for multiple jets compared with single jets with similar total orifice areas and simulated regurgitant stroke volumes. The presence or absence of multiple jets, rather than the total number of jets, appeared to have a greater effect on maximum CDJA. In addition, peak CDJA values for multiple jets increased with increased linear spacing. CONCLUSIONS A fixed regurgitant volume involving multiple jets will have a larger CDJA value than the same total volume from a single jet. The source of this discrepancy appears to be increased ambient fluid entrainment from adjacent regurgitant jets. This potential overestimation of MR severity using color Doppler flow jets should be taken into consideration when assessing MR prior to treatment or when assessing residual MR after double-orifice mitral valve repair.


Journal of Biomechanics | 2011

Low pulse pressure with high pulsatile external left ventricular power: Influence of aortic waves

Niema M. Pahlevan; Morteza Gharib

Elevated pulse pressure (pp) is considered to be a risk factor for adverse cardiovascular events since it is directly related to an elevated myocardial workload. Information about both pressure and flow wave must be provided to assess hemodynamic complexity and true level of external left ventricular power (ELVP). pp value as a single feature of aortic waves cannot identify true level of ELVP. However, it is generally presumed that ELVP (and consequently LV workload) is positively correlated with pp. This study examined this positive correlation. The aim of this study was to test the hypothesis that aortic wave dynamics can create destructive hemodynamic conditions that increase the ELVP even though pp appears to be normal. To test this hypothesis, a computational model of the aorta with physiological properties was used. A Finite Element Method with fluid-structure interaction was employed to solve the equations of the solid and fluid. The aortic wall was assumed to be elastic and isotropic. The blood was assumed to be an incompressible Newtonian fluid. Simulations were performed for various heart rates (HR) and different aortic compliances while keeping the shape of the inlet flow and peripheral resistance constant. As expected, in most of the cases studied here, higher pp was associated with higher LV power demand. However, for a given cardiac output, mean pressure, and location of total reflection site, we have found cases where the above-mentioned trend does not hold. Our results suggest that using pp as a single index can result in an underestimation of the LV power demand under certain conditions related to the altered wave dynamics. Hence, in hypertensive patients, a full analysis of aortic wave dynamics is essential for the prevention and management of left ventricular hypertrophy (LVH) and congestive heart failure.


PLOS ONE | 2011

Aortic Wave Dynamics and Its Influence on Left Ventricular Workload

Niema M. Pahlevan; Morteza Gharib

The pumping mechanism of the heart is pulsatile, so the heart generates pulsatile flow that enters into the compliant aorta in the form of pressure and flow waves. We hypothesized that there exists a specific heart rate at which the external left ventricular (LV) power is minimized. To test this hypothesis, we used a computational model to explore the effects of heart rate (HR) and aortic rigidity on left ventricular (LV) power requirement. While both mean and pulsatile parts of the pressure play an important role in LV power requirement elevation, at higher rigidities the effect of pulsatility becomes more dominant. For any given aortic rigidity, there exists an optimum HR that minimizes the LV power requirement at a given cardiac output. The optimum HR shifts to higher values as the aorta becomes more rigid. To conclude, there is an optimum condition for aortic waves that minimizes the LV pulsatile load and consequently the total LV workload.


Annals of Biomedical Engineering | 2011

A Physiologically Relevant, Simple Outflow Boundary Model for Truncated Vasculature

Niema M. Pahlevan; Faisal Amlani; M. Hossein Gorji; Fazle Hussain; Morteza Gharib

A realistic outflow boundary condition model for pulsatile flow in a compliant vessel is studied by taking into account physiological effects: compliance, resistance, and wave reflection of the downstream vasculature. The new model extends the computational domain with an elastic tube terminated in a rigid contraction. The contraction ratio, the length, and elasticity of the terminal tube can be adjusted to represent effects of the truncated vasculature. Using the wave intensity analysis method, we apply the model to the test cases of a straight vessel and the aorta and find good agreement with the physiological characteristics of blood flow and pressure. The model is suitable for cardiac transient (non-periodic) events and easily employed using so-called black box software.


Critical Care Medicine | 2017

Noninvasive iphone Measurement of Left Ventricular Ejection Fraction Using Intrinsic Frequency Methodology

Niema M. Pahlevan; Derek Rinderknecht; Peyman Tavallali; Marianne Razavi; Thao T. Tran; Michael W. Fong; Robert A. Kloner; Marie Csete; Morteza Gharib

Objective: The study is based on previously reported mathematical analysis of arterial waveform that extracts hidden oscillations in the waveform that we called intrinsic frequencies. The goal of this clinical study was to compare the accuracy of left ventricular ejection fraction derived from intrinsic frequencies noninvasively versus left ventricular ejection fraction obtained with cardiac MRI, the most accurate method for left ventricular ejection fraction measurement. Design: After informed consent, in one visit, subjects underwent cardiac MRI examination and noninvasive capture of a carotid waveform using an iPhone camera (The waveform is captured using a custom app that constructs the waveform from skin displacement images during the cardiac cycle.). The waveform was analyzed using intrinsic frequency algorithm. Setting: Outpatient MRI facility. Subjects: Adults able to undergo MRI were referred by local physicians or self-referred in response to local advertisement and included patients with heart failure with reduced ejection fraction diagnosed by a cardiologist. Interventions: Standard cardiac MRI sequences were used, with periodic breath holding for image stabilization. To minimize motion artifact, the iPhone camera was held in a cradle over the carotid artery during iPhone measurements. Measurements and Main Results: Regardless of neck morphology, carotid waveforms were captured in all subjects, within seconds to minutes. Seventy-two patients were studied, ranging in age from 20 to 92 years old. The main endpoint of analysis was left ventricular ejection fraction; overall, the correlation between ejection fraction–iPhone and ejection fraction–MRI was 0.74 (r = 0.74; p < 0.0001; ejection fraction–MRI = 0.93 × [ejection fraction–iPhone] + 1.9). Conclusions: Analysis of carotid waveforms using intrinsic frequency methods can be used to document left ventricular ejection fraction with accuracy comparable with that of MRI. The measurements require no training to perform or interpret, no calibration, and can be repeated at the bedside to generate almost continuous analysis of left ventricular ejection fraction without arterial cannulation.


Journal of the Royal Society Interface | 2014

Intrinsic frequency for a systems approach to haemodynamic waveform analysis with clinical applications

Niema M. Pahlevan; Peyman Tavallali; Derek Rinderknecht; Danny Petrasek; Ray V. Matthews; Thomas Y. Hou; Morteza Gharib

The reductionist approach has dominated the fields of biology and medicine for nearly a century. Here, we present a systems science approach to the analysis of physiological waveforms in the context of a specific case, cardiovascular physiology. Our goal in this study is to introduce a methodology that allows for novel insight into cardiovascular physiology and to show proof of concept for a new index for the evaluation of the cardiovascular system through pressure wave analysis. This methodology uses a modified version of sparse time–frequency representation (STFR) to extract two dominant frequencies we refer to as intrinsic frequencies (IFs; ω1 and ω2). The IFs are the dominant frequencies of the instantaneous frequency of the coupled heart + aorta system before the closure of the aortic valve and the decoupled aorta after valve closure. In this study, we extract the IFs from a series of aortic pressure waves obtained from both clinical data and a computational model. Our results demonstrate that at the heart rate at which the left ventricular pulsatile workload is minimized the two IFs are equal (ω1 = ω2). Extracted IFs from clinical data indicate that at young ages the total frequency variation (Δω = ω1 − ω2) is close to zero and that Δω increases with age or disease (e.g. heart failure and hypertension). While the focus of this paper is the cardiovascular system, this approach can easily be extended to other physiological systems or any biological signal.


Journal of Biomechanics | 2013

In-vitro investigation of a potential wave pumping effect in human aorta

Niema M. Pahlevan; Morteza Gharib

An impedance pump - also known as Liebau pump - is a simple valveless pump that operates based on the principles of wave propagation and reflection. It has been shown in embryonic zebrafish that a similar mechanism is responsible for the pumping action in the embryonic heart during the early stages before valve formation. Recent studies suggest that the cardiovascular system is designed to take advantage of wave propagation and reflection phenomena in the arterial network. In this study we report the results of an in-vitro study that examines the hypothesis that the adult human aorta acts as a passive pump based on Liebau effect. A hydraulic model with different compliant models of an artificial aorta was used for a series of in-vitro experiments. Our result indicates that wave propagation and reflection can result in a pumping mechanism in a compliant aorta.


PLOS ONE | 2014

A bio-inspired approach for the reduction of left ventricular workload.

Niema M. Pahlevan; Morteza Gharib

Previous studies have demonstrated the existence of optimization criteria in the design and development of mammalians cardiovascular systems. Similarities in mammalian arterial wave reflection suggest there are certain design criteria for the optimization of arterial wave dynamics. Inspired by these natural optimization criteria, we investigated the feasibility of optimizing the aortic waves by modifying wave reflection sites. A hydraulic model that has physical and dynamical properties similar to a human aorta and left ventricle was used for a series of in-vitro experiments. The results indicate that placing an artificial reflection site (a ring) at a specific location along the aorta may create a constructive wave dynamic that could reduce LV pulsatile workload. This simple bio-inspired approach may have important implications for the future of treatment strategies for diseased aorta.


Royal Society Open Science | 2015

On the convergence and accuracy of the cardiovascular intrinsic frequency method

Peyman Tavallali; Thomas Y. Hou; Derek Rinderknecht; Niema M. Pahlevan

In this paper, we analyse the convergence, accuracy and stability of the intrinsic frequency (IF) method. The IF method is a descendant of the sparse time frequency representation methods. These methods are designed for analysing nonlinear and non-stationary signals. Specifically, the IF method is created to address the cardiovascular system that by nature is a nonlinear and non-stationary dynamical system. The IF method is capable of handling specific nonlinear and non-stationary signals with less mathematical regularity. In previous works, we showed the clinical importance of the IF method. There, we showed that the IF method can be used to evaluate cardiovascular performance. In this article, we will present further details of the mathematical background of the IF method by discussing the convergence and the accuracy of the method with and without noise. It will be shown that the waveform fit extracted from the signal is accurate even in the presence of noise.


Scientific Reports | 2018

Artificial Intelligence Estimation of Carotid-Femoral Pulse Wave Velocity using Carotid Waveform

Peyman Tavallali; Marianne Razavi; Niema M. Pahlevan

In this article, we offer an artificial intelligence method to estimate the carotid-femoral Pulse Wave Velocity (PWV) non-invasively from one uncalibrated carotid waveform measured by tonometry and few routine clinical variables. Since the signal processing inputs to this machine learning algorithm are sensor agnostic, the presented method can accompany any medical instrument that provides a calibrated or uncalibrated carotid pressure waveform. Our results show that, for an unseen hold back test set population in the age range of 20 to 69, our model can estimate PWV with a Root-Mean-Square Error (RMSE) of 1.12 m/sec compared to the reference method. The results convey the fact that this model is a reliable surrogate of PWV. Our study also showed that estimated PWV was significantly associated with an increased risk of CVDs.

Collaboration


Dive into the Niema M. Pahlevan's collaboration.

Top Co-Authors

Avatar

Morteza Gharib

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Peyman Tavallali

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Derek Rinderknecht

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danny Petrasek

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Thomas Y. Hou

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew L. Cheng

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John C. Wood

Children's Hospital Los Angeles

View shared research outputs
Researchain Logo
Decentralizing Knowledge