Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nieves González is active.

Publication


Featured researches published by Nieves González.


Current Opinion in Endocrinology, Diabetes and Obesity | 2008

Bombesin-Related Peptides and their receptors: recent advances in their role in physiology and disease states

Nieves González; Terry W. Moody; Hisato Igarashi; Tetsuhide Ito; Robert T. Jensen

Purpose of reviewMammalian bombesin-related peptides, gastrin-releasing peptide and neuromedin B actions are mediated by two receptors (BB1-receptor, BB2-receptor), which are closely related to the orphan receptor BRS-3 (BB3-receptor). The purpose of this review is to highlight advances in the understanding of these peptides in physiology/disease states. Recent findingsPharmacologic/receptor-knockout studies show involvement of these receptors in a number of new processes/diseases. Neuromedin B/BB1-receptor is an important physiological regulator of pituitary–thyroid function; in mediating behavior, especially feas/anxiety; in mediating satiety through different cascades than gastrin-releasing peptide/BB2 receptors and for its autocrine tumor-growth effects. Gastrin-releasing peptide/BB2-receptor plays important roles in mediating signals for pruritus, lung development/injury, small intestinal mucosal defense, and central nervous system processes such as learning/memory. The signaling mechanisms of its potent growth effects are being elucidated and their possible therapeutic targets identified. BB3-receptor knockout mice provided insights for their obesity/glucose intolerance and demonstrated that this receptor may be important in the lung response to injury, tumor growth and gastrointestinal motility. Each receptor is frequently overexpressed in human tumors and has potent growth effects. This effect is being explored to develop new antitumor treatments, such as bombesin-receptor ligands conjugated to cytotoxic agents. SummaryThis receptor family is involved in an increasing number of central nervous system/peripheral processes physiologically and in disease states, and increased understanding of its role may lead to novel treatments.


Journal of Cellular Physiology | 2010

Presence of a Functional Receptor for GLP-1 in Osteoblastic Cells, Independent of the cAMP-Linked GLP-1 Receptor

Bernardo Nuche-Berenguer; Sergio Portal-Núñez; Paola Moreno; Nieves González; Alicia Acitores; Ana López-Herradón; Pedro Esbrit; Isabel Valverde; María Luisa Villanueva-Peñacarrillo

Glucagon‐like peptide 1 (GLP‐1) controls glucose metabolism in extrapancreatic tissues through receptors other than the pancreatic cAMP‐linked GLP‐1 receptor; also, GLP‐1 induces an insulin‐ and PTH‐independent bone anabolic action in insulin‐resistant and type‐2 diabetic rats. Here we searched for the presence and characteristics of GLP‐1 receptors in osteoblastic MC3T3‐E1 cells. [125I]‐GLP‐1 specific binding to MC3T3‐E1 cells was time‐ and temperature‐dependent, reaching maximal value at 30 min at 25°C; in these conditions, [125I]‐GLP‐1 binding was dissociable, and displaced by GLP‐1, partially by GLP‐2, but not by exendin‐4 (Ex‐4), exendin‐9 (Ex‐9), glucagon or insulin; Scatchard analysis of the unlabeled GLP‐1 data showed high and low affinity binding sites; cross‐linking of GLP‐1 binding revealed an estimated 70 kDa band, almost undetectable in the presence of 10−6 M GLP‐1. GLP‐1, Ex‐9, insulin or glucagon failed to modify cellular cAMP content, while GLP‐2 and Ex‐4 increased it. However, GLP‐1 induced an immediate hydrolysis of glycosylphosphatidylinositols (GPIs) generating short‐lived inositolphosphoglycans (IPGs), and an increase in phosphatidylinositol‐3 kinase (PI3K) and mitogen activated protein kinase (MAPK) activities; Ex‐4 also affected GPIs, but its action was delayed with respect to that of GLP‐1. This incretin was found to decrease Runx2 but increased osteocalcin gene expression, without affecting that of osteoprotegerin or the canonical Wnt pathway activity in MC3T3‐E1 cells which do not express the pancreatic GLP‐1 receptor. Our data demonstrate for the first time that GLP‐1 can directly and functionally interact with osteoblastic cells, possibly through a GPI/IPG‐coupled receptor. J. Cell. Physiol. 225: 585–592, 2010.


Regulatory Peptides | 2005

Effect of GLP-1 on glucose transport and its cell signalling in human myocytes

Nieves González; Alicia Acitores; Verónica Sancho; Isabel Valverde; María Luisa Villanueva-Peñacarrillo

Glucagon-like peptide-1 (GLP-1) controls glucose metabolism in extrapancreatic tissues participating in glucose homeostasis, through receptors not associated to cAMP. In rat hepatocytes, activation of PI3K/PKB, PKC and PP-1 mediates the GLP-1-induced stimulation of glycogen synthase. We have investigated the effect of GLP-1 in normal human myocytes, and that of its structurally related peptides exendin-4 (Ex-4) and its truncated form 9-39 (Ex-9) upon glucose uptake, and the participation of cellular enzymes proposed to mediate insulin actions. GLP-1 and both exendins activated, like insulin, PI3K/PKB and p42/44 MAPK enzymes, but p70s6k was activated only by GLP-1 and insulin. GLP-1, Ex-4 and Ex-9, like insulin, stimulated glucose uptake; wortmannin blocked the action of GLP-1, insulin and Ex-9, and reduced that of Ex-4; PD98059 abolished the effect of all peptides/hormones, while rapamycin blocked that of insulin and partially prevented that of GLP-1. H-7 abolished the action of GLP-1, insulin and Ex-4, while Ro 31-8220 prevented only the Ex-4 and Ex-9 effect. In conclusion, GLP-1, like insulin, stimulates glucose uptake, and this involves activation of PI3K/PKB, p44/42 MAPKs, partially p70s6k, and possibly PKC; Ex-4 and Ex-9 both have GLP-1-like effect upon glucose transport, in which both share with GLP-1 an activation of PI3K/PKB--partially in the case of Ex-4--and p44/42 MAPKs but not p70s6k.


Journal of Pharmacology and Experimental Therapeutics | 2006

Identification of bombesin receptor subtype-specific ligands: effect of N-methyl scanning, truncation, substitution, and evaluation of putative reported selective ligands.

Samuel A. Mantey; Nieves González; Michael Schumann; Tapas K. Pradhan; Lin Shen; David H. Coy; Robert T. Jensen

Mammalian bombesin (Bn) receptors include the gastrin-releasing peptide receptor, neuromedin B receptor, and bombesin receptor subtype 3 (BRS-3). These receptors are involved in a variety of physiological/pathologic processes, including thermoregulation, secretion, motility, chemotaxis, and mitogenic effects on both normal and malignant cells. Tumors frequently overexpress these receptors, and their presence is now used for imaging and receptor-mediated cytotoxicity. For these reasons, there is an increased need to develop synthetic, selective receptor subtype-specific ligands, especially agonists for these receptors. In this study, we used a number of strategies to identify useful receptor subtype-selective ligands, including synthesizing new analogs (N-methyl-substituted constrained analogs, truncations, and substitutions) in [d-Tyr6,βAla11,Phe13,Nle14]Bn(6–14), which has high affinity for all Bn receptors and is metabolically stable, as well as completely pharmacologically characterized analogs recently reported to be selective for these receptors in [Ca2+]i assays. Affinities and potencies of each analog were determined for each human Bn receptor subtype. N-Methyl substitutions in positions 14, 12, 11, 10, 9, and 8 did not result in selective analogs, with the exception of position 11, which markedly decreased affinity/potency. N-Terminal truncations or position 12 substitutions did not increase selectivity as previously reported by others. Of the four shortened analogs of [d-Phe6,βAla11,Phe13,Nle14]Bn(6–14) reported to be potent selective BRS-3 ligands on [Ca2+]i assays, only AcPhe,Trp,Ala,His(τBzl),Nip,Gly,Arg-NH2 had moderate selectivity for hBRS-3; however, it was less selective than previously reported Apa11 analogs, demonstrating these are still the most selective BRS-3 analogs available. However, both of these analogs should be useful templates to develop more selective BRS-3 ligands.


Journal of Molecular Endocrinology | 2012

Normalizing action of exendin-4 and GLP-1 in the glucose metabolism of extrapancreatic tissues in insulin-resistant and type 2 diabetic states

Paola Moreno; Bernardo Nuche-Berenguer; Irene Gutiérrez-Rojas; Alicia Acitores; Verónica Sancho; Isabel Valverde; Nieves González; María Luisa Villanueva-Peñacarrillo

Exendin-4 (Ex-4) mimics glucagon-like peptide-1 (GLP-1 or GCG as listed in the HUGO database), being anti-diabetic and anorectic, in stimulating glucose and lipid metabolism in extrapancreatic tissues. We studied the characteristics of Ex-4 and GLP-1 action, during prolonged treatment, on GLUTs expression (mRNA and protein), glycogen content (GC), glucose transport (GT), glycogen synthase a (GSa), and kinase (PI3K and MAPKs) activity, in liver, muscle, and fat of insulin-resistant (IR, by fructose) and type 2 diabetic (T2D, streptozotocin at birth) rats compared with normal rats. In both IR and T2D, the three tissues studied presented alterations in all measured parameters. In liver, GLP-1 and also Ex-4 normalized the lower than normal Glut2 (Slc2a2) expression and showed a trend to normalize the reduced GC in IR, and GLP-1, like Ex-4, also in T2D, effects mediated by PI3K and MAPKs. In skeletal muscle, neither GLP-1 nor Ex-4 modified Glut4 (Slc2a4) expression in either experimental model but showed normalization of reduced GT and GSa, in parallel with the normalization of reduced PI3K activity in T2D and MAPKs in both models. In adipose tissue, the altered GLUT4 expression in IR and T2D, along with reduced GT in IR and increased GT in T2D, and with hyperactivated PI3K in both, became normal after GLP-1 and Ex-4 treatment; yet, MAPKs, that were also higher, became normal only after Ex-4 treatment. The data shows that Ex-4, as well as GLP-1, exerts a normalizing effect on IR and T2D states through a distinct post-receptor mechanism, the liver being the main target for Ex-4 and GLP-1 to control glucose homeostasis.


Journal of Pharmacology and Experimental Therapeutics | 2013

Comparative Pharmacology of Bombesin Receptor Subtype-3, Nonpeptide Agonist MK-5046, a Universal Peptide Agonist, and Peptide Antagonist Bantag-1 for Human Bombesin Receptors

Paola Moreno; Samuel A. Mantey; Bernardo Nuche-Berenguer; Marc L. Reitman; Nieves González; David H. Coy; Robert T. Jensen

Bombesin-receptor-subtype-3 (BRS-3) is an orphan G-protein-coupled receptor of the bombesin (Bn) family whose natural ligand is unknown and which does not bind any natural Bn-peptide with high affinity. It is present in the central nervous system, peripheral tissues, and tumors; however, its role in normal physiology/pathophysiology is largely unknown because of the lack of selective ligands. Recently, MK-5046 [(2S)-1,1,1-trifluoro-2-[4-(1H-pyrazol-1-yl)phenyl]-3-(4-{[1-(trifluoromethyl)cyclopropyl]methyl}-1H-imidazol-2-yl)propan-2-ol] and Bantag-1 [Boc-Phe-His-4-amino-5-cyclohexyl-2,4,5-trideoxypentonyl-Leu-(3-dimethylamino) benzylamide N-methylammonium trifluoroacetate], a nonpeptide agonist and a peptide antagonist, respectively, for BRS-3 have been described, but there have been limited studies on their pharmacology. We studied MK-5046 and Bantag-1 interactions with human Bn-receptors—human bombesin receptor subtype-3 (hBRS-3), gastrin-releasing peptide receptor (GRP-R), and neuromedin B receptor (NMB-R)—and compared them with the nonselective, peptide-agonist [d-Tyr6,βAla11,Phe13,Nle14]Bn-(6–14) (peptide #1). Receptor activation was detected by activation of phospholipase C (PLC), mitogen-activated protein kinase (MAPK), focal adhesion kinase (FAK), paxillin, and Akt. In hBRS-3 cells, the relative affinities were Bantag-1 (1.3 nM) > peptide #1 (2 nM) > MK-5046 (37–160 nM) > GRP, NMB (>10 μM), and the binding-dose-inhibition curves were broad (>4 logs), with Hill coefficients differing significantly from unity. Curve-fitting demonstrated high-affinity (MK-5046, Ki = 0.08 nM) and low-affinity (MK-5046, Ki = 11–29 nM) binding sites. For PLC activation in hBRS-3 cells, the relative potencies were MK-5046 (0.02 nM) > peptide #1 (6 nM) > GRP, NMB, Bantag-1 (>10 μM), and MK-5046 had a biphasic dose response, whereas peptide #1 was monophasic. Bantag-1 was a specific hBRS-3-antagonist. In hBRS-3 cells, MK-5046 was a full agonist for activation of MAPK, FAK, Akt, and paxillin; however, it was a partial agonist for phospholipase A2 (PLA2) activation. The kinetics of activation/duration of action for PLC/MAPK activation of MK-5046 and peptide #1 differed, with peptide #1 causing more rapid stimulation; however, MK-5046 had more prolonged activity. Our study finds that MK-5046 and Bantag-1 have high affinity/selectivity for hBRS-3. The nonpeptide MK-5046 and peptide #1 agonists differ markedly in their receptor coupling, ability to activate different signaling cascades, and kinetics/duration of action. These results show that their hBRS-3 receptor activation is not always concordant and could lead to markedly different cellular responses.


Oncotarget | 2017

2017 update on the relationship between diabetes and colorectal cancer: epidemiology, potential molecular mechanisms and therapeutic implications

Nieves González; Isabel Prieto; Laura del Puerto-Nevado; Sergio Portal-Núñez; Juan A. Ardura; Marta Corton; Beatriz Fernandez-Fernandez; Oscar Aguilera; Carmen Gomez-Guerrero; Sebastian Mas; Juan Antonio Moreno; Marta Ruiz-Ortega; Ana Belen Sanz; Maria Dolores Sanchez-Niño; Federico Rojo; Pedro Esbrit; Carmen Ayuso; Gloria Alvarez-Llamas; Jesús Egido; Jesús García-Foncillas; Alberto Ortiz

Worldwide deaths from diabetes mellitus (DM) and colorectal cancer increased by 90% and 57%, respectively, over the past 20 years. The risk of colorectal cancer was estimated to be 27% higher in patients with type 2 DM than in non-diabetic controls. However, there are potential confounders, information from lower income countries is scarce, across the globe there is no correlation between DM prevalence and colorectal cancer incidence and the association has evolved over time, suggesting the impact of additional environmental factors. The clinical relevance of these associations depends on understanding the mechanism involved. Although evidence is limited, insulin use has been associated with increased and metformin with decreased incidence of colorectal cancer. In addition, colorectal cancer shares some cellular and molecular pathways with diabetes target organ damage, exemplified by diabetic kidney disease. These include epithelial cell injury, activation of inflammation and Wnt/β-catenin pathways and iron homeostasis defects, among others. Indeed, some drugs have undergone clinical trials for both cancer and diabetic kidney disease. Genome-wide association studies have identified diabetes-associated genes (e.g. TCF7L2) that may also contribute to colorectal cancer. We review the epidemiological evidence, potential pathophysiological mechanisms and therapeutic implications of the association between DM and colorectal cancer. Further studies should clarify the worldwide association between DM and colorectal cancer, strengthen the biological plausibility of a cause-and-effect relationship through characterization of the molecular pathways involved, search for specific molecular signatures of colorectal cancer under diabetic conditions, and eventually explore DM-specific strategies to prevent or treat colorectal cancer.


Peptides | 2011

Amylin effect in extrapancreatic tissues participating in glucose homeostasis, in normal, insulin-resistant and type 2 diabetic state.

Paola Moreno; Alicia Acitores; Irene Gutiérrez-Rojas; Bernardo Nuche-Berenguer; M El Assar; Leocadio Rodríguez-Mañas; Ramon Gomis; Isabel Valverde; Montse Visa; Willy Malaisse; Anna Novials; Nieves González; María Luisa Villanueva-Peñacarrillo

Amylin is co-secreted with insulin, responds to the same stimuli, is anorectic, lowers body weight by reducing fat mass, and is proposed for diabetes treatment. We examined the effect of a 3-day constant infusion of close to physiological doses of amylin in Wistar rats, on glucotransporter expression, glycogen content (G), glycogen synthase a activity (GSa) and glucose transport (GT), in liver, muscle and fat from insulin resistant (IR) and type 2 diabetic (T2D) models, compared to normal (N) animals; plasma glucose and insulin were measured. Plasma insulin in IR was higher than in N or T2D, and amylin normalized the value. In both, IR and T2D, liver G was lower than normal, accompanied by GLUT-2, mRNA and protein, higher and lower, respectively, than in N; amylin normalized G in both groups, without changes in GLUT-2, except for an mRNA increase in T2D. In IR and T2D, muscle GSa was reduced, together with respective over- and under-GLUT-4 expression; amylin induced only a trend toward GSa normalization in both groups. In isolated adipocytes, GT and GLUT-4 in IR and T2D were lower and higher, respectively, than in N; after amylin, not only GT was normalized in both groups but also the response to insulin was much more pronounced, including that in N, without major changes in GLUT-4. This suggests that the beneficial effect of amylin in states running with altered glucose homeostasis could occur by partially acting on the hexose metabolism of the liver and mainly on that of the adipose tissue.


Regulatory Peptides | 2011

Characteristic of GLP-1 effects on glucose metabolism in human skeletal muscle from obese patients.

María Luisa Villanueva-Peñacarrillo; Antonio Martín-Duce; Irene Ramos-Álvarez; Irene Gutiérrez-Rojas; Paola Moreno; Bernardo Nuche-Berenguer; Alicia Acitores; Verónica Sancho; Isabel Valverde; Nieves González

Direct effects of GLP-1, kinase-mediated, on glucose and lipid metabolism in rat and human extrapancreatic tissues, are amply documented and also changes in type-2 diabetic (T2D) patients. Here, we explored the characteristics of the GLP-1 action and those of its analogs Ex-4 and Ex-9, on muscle glucose transport (GT) and metabolism in human morbid obesity (OB), as compared with normal and T2D subjects. In primary cultured myocytes from OB, GT and glycogen synthase a (GSa) activity values were lower than normal, and comparable to those reported in T2D patients; GT was increased by either GLP-1 or Ex-9 in a more efficient manner than in normal or T2D, up to normal levels; the Ex-4 increasing effect on GSa activity was two times that in normal cells, while Ex-9 failed to modify the enzyme activity. In OB, the control value of all kinases analyzed - PI3K, PKB, MAPKs, and p70s6K - although lower than that in normal or T2D subjects, the cells maintained their response capability to GLP-1, Ex-4, Ex-9 and insulin, with some exceptions. GLP-1 and exendins showed a direct normalizing action in the altered glucose uptake and metabolism in the muscle of obese subjects, which in the case of GLP-1 could account, at least in part, for the reported restoration of the metabolic conditions of these patients after restrictive surgery.


Expert Opinion on Therapeutic Targets | 2015

Bombesin receptor subtype 3 as a potential target for obesity and diabetes

Nieves González; Paola Moreno; Robert T. Jensen

Introduction: Diabetes mellitus and obesity are important health issues; increasing in prevalence, both in the USA and globally. There are only limited pharmacological treatments, and although bariatric surgery is effective, new effective pharmacologic treatments would be of great value. This review covers one area of increasing interest that could yield new novel treatments of obesity/diabetes mellitus. It involves recognition of the central role the G-protein-coupled receptor, bombesin receptor subtype 3 (BRS-3) plays in energy/glucose metabolism. Areas covered: Since the initial observation that BRS-3 knockout mice develop obesity, hypertension, impaired glucose metabolism and hyperphagia, there have been numerous studies of the mechanisms involved and the development of selective BRS-3 agonists/antagonists, which have marked effects on body weight, feeding and glucose/insulin homeostasis. In this review, each of these areas is briefly reviewed. Expert opinion: BRS-3 plays an important role in glucose/energy homeostasis. The development of potent, selective BRS-3 agonists demonstrates promise as a novel approach to treat obesity/diabetic states. One important question that needs to be addressed is whether BRS-3 agonists need to be centrally acting. This is particularly important in light of recent animal and human studies that report transient cardiovascular side effects with centrally acting oral BRS agonists.

Collaboration


Dive into the Nieves González's collaboration.

Top Co-Authors

Avatar

Robert T. Jensen

National Bureau of Economic Research

View shared research outputs
Top Co-Authors

Avatar

Verónica Sancho

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Samuel A. Mantey

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Isabel Valverde

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Paola Moreno

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tapas K. Pradhan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sergio Portal-Núñez

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Willy Malaisse

Université libre de Bruxelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge