Nigel C. Bennett
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nigel C. Bennett.
Nephrology | 2012
David M. Small; Jeff S. Coombes; Nigel C. Bennett; David W. Johnson; Glenda C. Gobe
Chronic kidney disease (CKD) is a common and serious problem that adversely affects human health, limits longevity and increases costs to health‐care systems worldwide. Its increasing incidence cannot be fully explained by traditional risk factors. Oxidative stress is prevalent in CKD patients and is considered to be an important pathogenic mechanism. Oxidative stress develops from an imbalance between free radical production often increased through dysfunctional mitochondria formed with increasing age, type 2 diabetes mellitus, inflammation, and reduced anti‐oxidant defences. Perturbations in cellular oxidant handling influence downstream cellular signalling and, in the kidney, promote renal cell apoptosis and senescence, decreased regenerative ability of cells, and fibrosis. These factors have a stochastic deleterious effect on kidney function. The majority of studies investigating anti‐oxidant treatments in CKD patients show a reduction in oxidative stress and many show improved renal function. Despite heterogeneity in the oxidative stress levels in the CKD population, there has been little effort to measure patient oxidative stress levels before the use of any anti‐oxidants therapies to optimize outcome. This review describes the development of oxidative stress, how it can be measured, the involvement of mitochondrial dysfunction and the molecular pathways that are altered, the role of oxidative stress in CKD pathogenesis and an update on the amelioration of CKD using anti‐oxidant therapies.
The International Journal of Biochemistry & Cell Biology | 2010
Nigel C. Bennett; Robert A. Gardiner; John D. Hooper; David W. Johnson; Glenda C. Gobe
The classical action of androgen receptor (AR) is to regulate gene transcriptional processes via AR nuclear translocation, response element binding and recruitment of, or crosstalk with, transcription factors. AR also utilises non-classical, non-genomic mechanisms of signal transduction. These precede gene transcription or protein synthesis, and involve steroid-induced modulation of cytoplasmic or cell membrane-bound regulatory proteins. Despite many decades of investigation, the role of AR in gene regulation of cells and tissues remains only partially characterised. AR exerts most of its effects in sex hormone-dependent tissues of the body, but the receptor is also expressed in many tissues not previously thought to be androgen sensitive. Thus it is likely that a complex, more over-arching, role for AR exists. Each AR domain co-ordinates a multitude of individual and vital roles via a diverse array of interacting partner molecules that are necessary for cellular and tissue development and maintenance. Aberrant AR activity, promoted by mutations or binding partner misregulation, can present as many clinical manifestations including androgen insensitivity syndrome and prostate cancer. In the case of malignant prostate cancer, treatment generally revolves around androgen deprivation therapies designed to interfere with AR action and the androgen signalling axis. Androgen therapies for prostate cancer often fail, highlighting a real need for increased research into AR function.
Cancers | 2014
Nigel C. Bennett; Camile S. Farah
Compelling evidence supports the transition of next generation sequencing (NGS) technology from a research environment into clinical practice. Before NGS technologies are fully adopted in the clinic, they should be thoroughly scrutinised for their potential as powerful diagnostic and prognostic tools. The importance placed on generating accurate NGS data, and consequently appropriate clinical interpretation, has stimulated much international discussion regarding the creation and implementation of strict guidelines and regulations for NGS clinical use. In the context of clinical oncology, NGS technologies are currently transitioning from a clinical research background into a setting where they will contribute significantly to individual patient cancer management. This paper explores the steps that have been taken, and those still required, for the transition of NGS into the clinical area, with particular emphasis placed on validation in the setting of clinical oncology.
Nephron Experimental Nephrology | 2012
David M. Small; Nigel C. Bennett; Sandrine Roy; Brian Gabrielli; David W. Johnson; Glenda C. Gobe
Background: The incidence and cost of chronic kidney disease (CKD) are increasing. Renal tubular epithelial cell dysfunction and attrition, involving increased apoptosis and cell senescence, are central to the pathogenesis of CKD. The aim here was to use an in vitro model to investigate the separate and cumulative effects of oxidative stress, mitochondrial dysfunction and cell senescence in promoting loss of renal mass. Methods: Human kidney tubular epithelial cells (HK2) were treated with moderate hydrogen peroxide (H2O2) for oxidative stress, with or without cell cycle inhibition (apigenin, API) for cell senescence. Adenosine triphosphate (ATP) and oxidative stress were measured by ATP assay, lipid peroxidation, total antioxidant capacity, mitochondrial function with confocal microscopy, MitoTracker Red CMXRos and live cell imaging with JC-1. In parallel, cell death and injury (i.e. apoptosis and Bax/Bcl-XL expression, lactate dehydrogenase), cell senescence (SA-β-galactosidase) and renal regenerative ability (cell proliferation), and their modulation with the anti-oxidant N-acetyl-cysteine (NAC) were investigated. Results: H2O2 and API, separately, increased oxidative stress and mitochondrial dysfunction, apoptosis and cell senescence. Although API caused cell senescence, it also induced oxidative stress at levels similar to H2O2 treatment alone, indicating that senescence and oxidative stress may be intrinsically linked. When H2O2 and API were delivered concurrently, their detrimental effects on renal cell loss were compounded. The antioxidant NAC attenuated apoptosis and senescence, and restored regenerative potential to the kidney. Conclusion: Oxidative stress and cell senescence both cause mitochondrial destabilization and cell loss and contribute to the development of the cellular characteristics of CKD.
American Journal of Pathology | 2012
Nigel C. Bennett; John D. Hooper; Duncan Lambie; Cheok Soon Lee; Tao Yang; David A. Vesey; Hemamali Samaratunga; David W. Johnson; Glenda C. Gobe
Malignant prostate cancer (PCa) is usually treated with androgen deprivation therapies (ADTs). Recurrent PCa is resistant to ADT. This research investigated whether PCa can potentially produce androgens de novo, making them androgen self-sufficient. Steroidogenic enzymes required for androgen synthesis from cholesterol (CYP11A1, CYP17A1, HSD3β, HSD17β3) were investigated in human primary PCa (n = 90), lymph node metastases (LNMs; n = 8), and benign prostatic hyperplasia (BPH; n = 6) with the use of IHC. Six prostate cell lines were investigated for mRNA and protein for steroidogenic enzymes and for endogenous synthesis of testosterone and 5α-dihydrotestosterone. All enzymes were identified in PCa, LNMs, BPH, and cell lines. CYP11A1 (rate-limiting enzyme) was expressed in cancerous and noncancerous prostate glands. CYP11A1, CYP17A1, HSD3β, and HSD17β3 were identified, respectively, in 78%, 52%, 16%, and 82% of human BPH and PCa samples. Approximately 10% of primary PCa, LNMs, and BPH expressed all four enzymes simultaneously. CYP11A1 expression was stable, CYP17A1 increased, and HSD3β and HSD17β3 decreased with disease progression. CYP17A1 expression was significantly correlated with CYP11A1 (P = 0.0009), HSD3β (P = 0.0297), and HSD17β3 (P = 0.0090) in vivo, suggesting CYP17A1 has a key role in prostatic steroidogenesis similar to testis and adrenal roles. In vitro, all cell lines expressed mRNA for all enzymes. Protein was not always detectable; however, all cell lines synthesized androgen from cholesterol. The results indicate that monitoring steroidogenic metabolites in patients with PCa may provide useful information for therapy intervention.
BMC Cancer | 2012
Robert A. Gardiner; John Yaxley; Geoff Coughlin; Nigel Dunglison; Stefano Occhipinti; Sandra Younie; Rob Carter; Scott Williams; Robyn J Medcraft; Nigel C. Bennett; Martin F. Lavin; Suzanne K. Chambers
BackgroundProstate cancer is the most common male cancer in the Western world however there is ongoing debate about the optimal treatment strategy for localised disease. While surgery remains the most commonly received treatment for localised disease in Australia more recently a robotic approach has emerged as an alternative to open and laparoscopic surgery. However, high level data is not yet available to support this as a superior approach or to guide treatment decision making between the alternatives. This paper presents the design of a randomised trial of Robotic and Open Prostatectomy for men newly diagnosed with localised prostate cancer that seeks to answer this question.Methods/design200 men per treatment arm (400 men in total) are being recruited after diagnosis and before treatment through a major public hospital outpatient clinic and randomised to 1) Robotic Prostatectomy or 2) Open Prostatectomy. All robotic prostatectomies are being performed by one surgeon and all open prostatectomies are being performed by one other surgeon. Outcomes are being measured pre-operatively and at 6 weeks and 3, 6, 12 and 24 months post-surgery. Oncological outcomes are being related to positive surgical margins, biochemical recurrence +/− the need for further treatment. Non-oncological outcome measures include: pain, physical and mental functioning, fatigue, summary (preference-based utility scores) and domain-specific QoL (urinary incontinence, bowel function and erectile function), cancer specific distress, psychological distress, decision-related distress and time to return to usual activities. Cost modelling of each approach, as well as full economic appraisal, is also being undertaken.DiscussionThe study will provide recommendations about the relative benefits of Robotic and Open Prostatectomy to support informed patient decision making about treatment for localised prostate cancer; and to assist in treatment services planning for this patient group.Trial registrationACTRN12611000661976
Iubmb Life | 2009
Nigel C. Bennett; John D. Hooper; C. Soon Lee; Glenda C. Gobe
The androgen receptor (AR) is involved in the development and maintenance of the normal prostate and the development and progression of prostate cancer (PCa). Caveolin‐1 (cav‐1) is an AR co‐regulator. The expression of this integral membrane protein is upregulated in PCa and correlates positively with its development. This review focuses on the likely interactive roles of AR and cav‐1, with particular reference to progression to androgen‐insensitivity in PCa. The classical role of AR is modulation of gene transcription by binding specific DNA sequences called androgen response elements in the promoter regions of target genes. To carry out this role, AR interacts with many co‐regulator proteins which either enhance or repress its activation. Altered expression or misregulated activation of a co‐regulator protein may significantly alter AR activity and the basal transcription rate of androgen responsive genes. Cav‐1 has roles in cell signalling and trafficking, roles that are important in PCa survival, metastasis, and the development of multidrug resistant phenotypes. Although cav‐1 appears to increase AR genomic activity and increase tumor cell survival, there is also mounting evidence that cav‐1 can manipulate rapid, non‐genomic AR signalling at the plasma membrane. By increasing our understanding of cav‐1 as an AR co‐regulator, we may be able to reinstate appropriate transcriptional responses to androgen signalling and minimise misregulated AR activity, thus permitting more effective targeted therapies for PCa.
American Journal of Physiology-renal Physiology | 2014
Glenda C. Gobe; Nigel C. Bennett; M. J. West; Paul B. Colditz; Lindsay Brown; David A. Vesey; David W. Johnson
Treatment of renal ischemia-reperfusion (IR) injury with recombinant human erythropoietin (rhEPO) reduces acute kidney injury and improves function. We aimed to investigate whether progression to chronic kidney disease associated with acute injury was also reduced by rhEPO treatment, using in vivo and in vitro models. Rats were subjected to bilateral 40-min renal ischemia, and kidneys were studied at 4, 7, and 28 days postreperfusion for renal function, tubular injury and repair, inflammation, and fibrosis. Acute injury was modulated using rhEPO (1,000 or 5,000 IU/kg, intraperitoneally) at the time of reperfusion. Renal tubular epithelial cells or fibroblasts in culture were subjected to hypoxia or oxidative stress, with or without rhEPO (200 IU/ml), and fibrogenesis was studied. The results of the in vivo model confirmed functional and structural improvement with rhEPO at 4 days post-IR (P < 0.05). At 7 days post-IR, fibrosis and myofibroblast stimulation were increased with IR with and without rhEPO (P < 0.01). However, at 28 days post-IR, renal fibrosis and myofibroblast numbers were significantly greater with IR plus rhEPO (P < 0.01) compared with IR only. Mechanistically, rhEPO stimulated profibrotic transforming growth factor-β, oxidative stress (marker 8-hydroxy-deoxyguanosine), and phosphorylation of the signal transduction protein extracellular signal-regulated kinase. In vitro, rhEPO protected tubular epithelium from apoptosis but stimulated epithelial-to-mesenchymal transition and also protected and activated fibroblasts, particularly with oxidative stress. In summary, although rhEPO was protective of renal function and structure in acute kidney injury, the supraphysiological dose needed for renoprotection contributed to fibrogenesis and stimulated chronic kidney disease in the long term.
American Journal of Physiology-renal Physiology | 2014
David M. Small; Christudas Morais; Jeff S. Coombes; Nigel C. Bennett; David W. Johnson; Glenda C. Gobe
The mechanism(s) underlying renoprotection by peroxisome proliferator-activated receptor (PPAR)-γ agonists in diabetic and nondiabetic kidney disease are not well understood. Mitochondrial dysfunction and oxidative stress contribute to kidney disease. PPAR-γ upregulates proteins required for mitochondrial biogenesis. Our aim was to determine whether PPAR-γ has a role in protecting the kidney proximal tubular epithelium (PTE) against mitochondrial destabilisation and oxidative stress. HK-2 PTE cells were subjected to oxidative stress (0.2-1.0 mM H₂O₂) for 2 and 18 h and compared with untreated cells for apoptosis, mitosis (morphology/biomarkers), cell viability (MTT), superoxide (dihydroethidium), mitochondrial function (MitoTracker red and JC-1), ATP (luminescence), and mitochondrial ultrastructure. PPAR-γ, phospho-PPAR-γ, PPAR-γ coactivator (PGC)-1α, Parkin (Park2), p62, and light chain (LC)3β were investigated using Western blots. PPAR-γ was modulated using the agonists rosiglitazone, pioglitazone, and troglitazone. Mitochondrial destabilization increased with H₂O₂concentration, ATP decreased (2 and 18 h; P < 0.05), Mitotracker red and JC-1 fluorescence indicated loss of mitochondrial membrane potential, and superoxide increased (18 h, P < 0.05). Electron microscopy indicated sparse mitochondria, with disrupted cristae. Mitophagy was evident at 2 h (Park2 and LC3β increased; p62 decreased). Impaired mitophagy was indicated by p62 accumulation at 18 h (P < 0.05). PPAR-γ expression decreased, phospho-PPAR-γ increased, and PGC-1α decreased (2 h), indicating aberrant PPAR-γ activation and reduced mitochondrial biogenesis. Cell viability decreased (2 and 18 h, P < 0.05). PPAR-γ agonists promoted further apoptosis. In summary, oxidative stress promoted mitochondrial destabilisation in kidney PTE, in association with increased PPAR-γ phosphorylation. PPAR-γ agonists failed to protect PTE. Despite positive effects in other tissues, PPAR-γ activation appears to be detrimental to kidney PTE health when oxidative stress induces damage.
Pathology | 2012
Retnagowri Rajandram; Nigel C. Bennett; Zhiqiang Wang; Joanna Perry-Keene; David A. Vesey; David W. Johnson; Glenda C. Gobe
Aims: The tumour necrosis factor (TNF) receptor-associated factor (TRAF) family of proteins links the TNF receptor superfamily to cell signalling cascades. TRAF1 is involved in regulation of apoptosis, proliferation, differentiation and stress responses. It has a role in development of several malignancies, but no information for renal cell carcinoma (RCC) is available. Methods: Expression profiles for TRAF1 were investigated in 121 samples of human RCC of various subtypes plus paired normal kidney prepared in tissue microarrays, in comparison with apoptosis (morphology, ApopTag) and mitosis (morphology, proliferating cell nuclear antigen/PCNA). TRAF1 function was tested in vitro in RCC ACHN cells. TRAF1 short interfering RNA (siRNA) was used to inhibit expression of TRAF1 in ACHN cells untreated or treated with cancer therapies known to induce apoptosis (20 Gy X-irradiation and/or 500 IU/mL interferon-alpha). Results: In patient samples, TRAF1 localised to proximal tubular epithelium in normal kidney and was significantly decreased in clear cell RCC as one group (p < 0.01) and all other RCC subclassifications grouped together (p < 0.05). There was little apoptosis identified in any RCC samples. In vitro, TRAF1 siRNA caused significant reduction in TRAF1 expression and a concurrent decrease in apoptosis and increase in proliferative activity (both p < 0.05) in the ACHN RCC cells treated with radiation and interferon-alpha. Conclusion: TRAF1 may have a pro-apoptotic, anti-mitotic role in RCC. The low TRAF1 expression in untreated RCC patient samples compared with normal kidney, and the localisation of TRAF1 to the proximal tubular epithelium from which many RCC originate, may indicate a potential for targeted therapy in RCC.