Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nigel C. Brissett is active.

Publication


Featured researches published by Nigel C. Brissett.


Nature | 2014

Ribosomal Oxygenases are Structurally Conserved from Prokaryotes to Humans.

Rasheduzzaman Chowdhury; Rok Sekirnik; Nigel C. Brissett; T. Krojer; Chia-hua Ho; Stanley S. Ng; Ian J. Clifton; Wei Ge; Nadia J. Kershaw; Gavin C. Fox; J.R.C. Muniz; M. Vollmar; C. Phillips; E.S. Pilka; K.L. Kavanagh; F von Delft; U. Oppermann; Michael A. McDonough; Aidan J. Doherty; Christopher J. Schofield

2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components and in the hydroxylation of transcription factors and splicing factor proteins. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA and ribosomal proteins have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone Nε-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Ribonucleolytic resection is required for repair of strand displaced nonhomologous end-joining intermediates

Edward J. Bartlett; Nigel C. Brissett; Aidan J. Doherty

Significance Nonhomologous end joining (NHEJ) is a major DNA-break repair pathway in eukaryotes and prokaryotes but is assumed to be absent in archaea. This study establishes that a functionally homologous pathway is present in archaea. We have reconstituted archaeal NHEJ repair in vitro, demonstrating that it is closely related to the bacterial apparatus and preferentially repairs breaks using RNA intermediates. We identify a role for a functionally unascribed nuclease in preventing the accumulation of genotoxic repair intermediates produced by strand displacement. This study has important implications for our understanding of the mechanisms of DNA-break repair by NHEJ and the evolution of end-joining pathways. Nonhomologous end-joining (NHEJ) pathways repair DNA double-strand breaks (DSBs) in eukaryotes and many prokaryotes, although it is not reported to operate in the third domain of life, archaea. Here, we describe a complete NHEJ complex, consisting of DNA ligase (Lig), polymerase (Pol), phosphoesterase (PE), and Ku from a mesophillic archaeon, Methanocella paludicola (Mpa). Mpa Lig has limited DNA nick-sealing activity but is efficient in ligating nicks containing a 3′ ribonucleotide. Mpa Pol preferentially incorporates nucleoside triphosphates onto a DNA primer strand, filling DNA gaps in annealed breaks. Mpa PE sequentially removes 3′ phosphates and ribonucleotides from primer strands, leaving a ligatable terminal 3′ monoribonucleotide. These proteins, together with the DNA end-binding protein Ku, form a functional NHEJ break-repair apparatus that is highly homologous to the bacterial complex. Although the major roles of Pol and Lig in break repair have been reported, PE’s function in NHEJ has remained obscure. We establish that PE is required for ribonucleolytic resection of RNA intermediates at annealed DSBs. Polymerase-catalyzed strand-displacement synthesis on DNA gaps can result in the formation of nonligatable NHEJ intermediates. The function of PE in NHEJ repair is to detect and remove inappropriately incorporated ribonucleotides or phosphates from 3′ ends of annealed DSBs to configure the termini for ligation. Thus, PE prevents the accumulation of abortive genotoxic DNA intermediates arising from strand displacement synthesis that otherwise would be refractory to repair.


Biochemical Society Transactions | 2009

Repairing DNA double-strand breaks by the prokaryotic non-homologous end-joining pathway

Nigel C. Brissett; Aidan J. Doherty

The NHEJ (non-homologous end-joining) pathway is one of the major mechanisms for repairing DSBs (double-strand breaks) that occur in genomic DNA. In common with eukaryotic organisms, many prokaryotes possess a conserved NHEJ apparatus that is essential for the repair of DSBs arising in the stationary phase of the cell cycle. Although the bacterial NHEJ complex is much more minimal than its eukaryotic counterpart, both pathways share a number of common mechanistic features. The relative simplicity of the prokaryotic NHEJ complex makes it a tractable model system for investigating the cellular and molecular mechanisms of DSB repair. The present review describes recent advances in our understanding of prokaryotic end-joining, focusing primarily on biochemical, structural and cellular aspects of the mycobacterial NHEJ repair pathway.


Nucleic Acids Research | 2015

Primase-polymerases are a functionally diverse superfamily of replication and repair enzymes.

Thomas A. Guilliam; Benjamin A. Keen; Nigel C. Brissett; Aidan J. Doherty

Until relatively recently, DNA primases were viewed simply as a class of proteins that synthesize short RNA primers requisite for the initiation of DNA replication. However, recent studies have shown that this perception of the limited activities associated with these diverse enzymes can no longer be justified. Numerous examples can now be cited demonstrating how the term ‘DNA primase’ only describes a very narrow subset of these nucleotidyltransferases, with the vast majority fulfilling multifunctional roles from DNA replication to damage tolerance and repair. This article focuses on the archaeo-eukaryotic primase (AEP) superfamily, drawing on recently characterized examples from all domains of life to highlight the functionally diverse pathways in which these enzymes are employed. The broad origins, functionalities and enzymatic capabilities of AEPs emphasizes their previous functional misannotation and supports the necessity for a reclassification of these enzymes under a category called primase-polymerases within the wider functional grouping of polymerases. Importantly, the repositioning of AEPs in this way better recognizes their broader roles in DNA metabolism and encourages the discovery of additional functions for these enzymes, aside from those highlighted here.


DNA Repair | 2010

Linking up and interacting with BRCT domains.

Felicity Z. Watts; Nigel C. Brissett

BRCT domains are present in an ever expanding family of proteins that includes many DNA repair and checkpoint proteins. The most prominent member of the BRCT family is BRCA1, mutations in which are responsible for a high proportion of breast and ovarian cancers. BRCT domains act as protein-protein interaction modules and facilitate the formation of hetero- and homo-oligomers. The domains occur either singly or in pairs, with up to eight domains in a single protein. When in pairs the domains are separated by a short inter-BRCT linker. Numerous crystal structures have been determined for BRCT domains from a range of different proteins, which indicate that the overall structure of the BRCT domains is generally well conserved. In contrast, the positions and structures of the linker regions are more varied, as are the roles of the linkers. Here, we describe the protein-protein interactions involving three different inter-BRCT linker regions, those of DNA ligase IV (LigIV), Schizosaccharomyces pombe Crb2 and human 53BP1.


Nucleic Acids Research | 2016

PolDIP2 interacts with human PrimPol and enhances its DNA polymerase activities

Thomas A. Guilliam; Laura J. Bailey; Nigel C. Brissett; Aidan J. Doherty

Translesion synthesis (TLS) employs specialized DNA polymerases to bypass replication fork stalling lesions. PrimPol was recently identified as a TLS primase and polymerase involved in DNA damage tolerance. Here, we identify a novel PrimPol binding partner, PolDIP2, and describe how it regulates PrimPols enzymatic activities. PolDIP2 stimulates the polymerase activity of PrimPol, enhancing both its capacity to bind DNA and the processivity of the catalytic domain. In addition, PolDIP2 stimulates both the efficiency and error-free bypass of 8-oxo-7,8-dihydrodeoxyguanosine (8-oxoG) lesions by PrimPol. We show that PolDIP2 binds to PrimPols catalytic domain and identify potential binding sites. Finally, we demonstrate that depletion of PolDIP2 in human cells causes a decrease in replication fork rates, similar to that observed in PrimPol−/− cells. However, depletion of PolDIP2 in PrimPol−/− cells does not produce a further decrease in replication fork rates. Together, these findings establish that PolDIP2 can regulate the TLS polymerase and primer extension activities of PrimPol, further enhancing our understanding of the roles of PolDIP2 and PrimPol in eukaryotic DNA damage tolerance.


Cell Reports | 2013

Molecular Basis for DNA Double-Strand Break Annealing and Primer Extension by an NHEJ DNA Polymerase

Nigel C. Brissett; Maria J. Martin; Edward J. Bartlett; Julie Bianchi; Luis Blanco; Aidan J. Doherty

Summary Nonhomologous end-joining (NHEJ) is one of the major DNA double-strand break (DSB) repair pathways. The mechanisms by which breaks are competently brought together and extended during NHEJ is poorly understood. As polymerases extend DNA in a 5′-3′ direction by nucleotide addition to a primer, it is unclear how NHEJ polymerases fill in break termini containing 3′ overhangs that lack a primer strand. Here, we describe, at the molecular level, how prokaryotic NHEJ polymerases configure a primer-template substrate by annealing the 3′ overhanging strands from opposing breaks, forming a gapped intermediate that can be extended in trans. We identify structural elements that facilitate docking of the 3′ ends in the active sites of adjacent polymerases and reveal how the termini act as primers for extension of the annealed break, thus explaining how such DSBs are extended in trans. This study clarifies how polymerases couple break-synapsis to catalysis, providing a molecular mechanism to explain how primer extension is achieved on DNA breaks.


FEBS Journal | 2005

Spectroscopic and kinetic properties of the horseradish peroxidase mutant T171S. Evidence for selective effects on the reduced state of the enzyme.

Barry D. Howes; Nigel C. Brissett; Wendy A. Doyle; Andrew T. Smith; Giulietta Smulevich

Studies on horseradish peroxidase C and other haem peroxidases have been carried out on selected mutants in the distal haem cavity providing insight into the functional importance of the distal residues. Recent work has demonstrated that proximal structural features can also exert an important influence in determining the electronic structure of the haem pocket. To extend our understanding of the significance of proximal characteristics in regulating haem properties the proximal Thr171Ser mutant has been constructed. Thr171 is an important linking residue between the structural proximal Ca2+ ion and the proximal haem ligand, in particular the methyl group of Thr171 interdigitates with other proximal residues in the core of the enzyme. Although the mutation induces no significant changes to the functional properties of the enzyme, electronic absorption and resonance Raman spectroscopy reveal that it has a highly selective affect on the reduced state of the enzyme, effectively stabilizing it, whilst the electronic properties of the Fe(III) state unchanged and essentially identical to those of the native protein. This results in a significant change in the Fe2+/Fe3+ redox potential of the mutant. It is concluded that the unusual properties of the Thr171Ser mutant reflect the loss of a structural restraint in the proximal haem pocket that allows ‘slippage’ of the proximal haem ligand, but only in the reduced state. This is a remarkably subtle and specific effect that appears to increase the flexibility of the reduced state of the mutant compared to that of the wild‐type protein.


Nucleic Acids Research | 2016

Molecular basis for DNA strand displacement by NHEJ repair polymerases

Edward J. Bartlett; Nigel C. Brissett; Przemysław Płociński; Tom Carlberg; Aidan J. Doherty

The non-homologous end-joining (NHEJ) pathway repairs DNA double-strand breaks (DSBs) in all domains of life. Archaea and bacteria utilize a conserved set of multifunctional proteins in a pathway termed Archaeo-Prokaryotic (AP) NHEJ that facilitates DSB repair. Archaeal NHEJ polymerases (Pol) are capable of strand displacement synthesis, whilst filling DNA gaps or partially annealed DNA ends, which can give rise to unligatable intermediates. However, an associated NHEJ phosphoesterase (PE) resects these products to ensure that efficient ligation occurs. Here, we describe the crystal structures of these archaeal (Methanocella paludicola) NHEJ nuclease and polymerase enzymes, demonstrating their strict structural conservation with their bacterial NHEJ counterparts. Structural analysis, in conjunction with biochemical studies, has uncovered the molecular basis for DNA strand displacement synthesis in AP-NHEJ, revealing the mechanisms that enable Pol and PE to displace annealed bases to facilitate their respective roles in DSB repair.


Biochemical Journal | 2016

Mode of action of DNA-competitive small molecule inhibitors of tyrosyl DNA phosphodiesterase 2.

Peter Hornyak; Trevor Askwith; Sarah R. Walker; Emilia Komulainen; Michael Paradowski; Lewis E. Pennicott; Edward J. Bartlett; Nigel C. Brissett; Ali Raoof; Mandy Watson; Allan M. Jordan; Donald J. Ogilvie; Simon E. Ward; John R. Atack; Laurence H. Pearl; Keith W. Caldecott; Antony W. Oliver

Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a 5′-tyrosyl DNA phosphodiesterase important for the repair of DNA adducts generated by non-productive (abortive) activity of topoisomerase II (TOP2). TDP2 facilitates therapeutic resistance to topoisomerase poisons, which are widely used in the treatment of a range of cancer types. Consequently, TDP2 is an interesting target for the development of small molecule inhibitors that could restore sensitivity to topoisomerase-directed therapies. Previous studies identified a class of deazaflavin-based molecules that showed inhibitory activity against TDP2 at therapeutically useful concentrations, but their mode of action was uncertain. We have confirmed that the deazaflavin series inhibits TDP2 enzyme activity in a fluorescence-based assay, suitable for high-throughput screen (HTS)-screening. We have gone on to determine crystal structures of these compounds bound to a ‘humanized’ form of murine TDP2. The structures reveal their novel mode of action as competitive ligands for the binding site of an incoming DNA substrate, and point the way to generating novel and potent inhibitors of TDP2.

Collaboration


Dive into the Nigel C. Brissett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis Blanco

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Gavin C. Fox

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raquel Juárez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angel J. Picher

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge