Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nigel D. Browning is active.

Publication


Featured researches published by Nigel D. Browning.


ACS Nano | 2013

Formation of the spinel phase in the layered composite cathode used in Li-Ion batteries

Meng Gu; Ilias Belharouak; Jianming Zheng; Huiming Wu; Jie Xiao; Arda Genc; Khalil Amine; Suntharampillai Thevuthasan; Donald R. Baer; Ji-Guang Zhang; Nigel D. Browning; Jun Liu; Chongmin Wang

Pristine Li-rich layered cathodes, such as Li(1.2)Ni(0.2)Mn(0.6)O(2) and Li(1.2)Ni(0.1)Mn(0.525)Co(0.175)O(2), were identified to exist in two different structures: LiMO(2)R3[overline]m and Li(2)MO(3)C2/m phases. Upon 300 cycles of charge/discharge, both phases gradually transform to the spinel structure. The transition from LiMO(2)R3[overline]m to spinel is accomplished through the migration of transition metal ions to the Li site without breaking down the lattice, leading to the formation of mosaic structured spinel grains within the parent particle. In contrast, transition from Li(2)MO(3)C2/m to spinel involves removal of Li(+) and O(2-), which produces large lattice strain and leads to the breakdown of the parent lattice. The newly formed spinel grains show random orientation within the same particle. Cracks and pores were also noticed within some layered nanoparticles after cycling, which is believed to be the consequence of the lattice breakdown and vacancy condensation upon removal of lithium ions. The AlF(3)-coating can partially relieve the spinel formation in the layered structure during cycling, resulting in a slower capacity decay. However, the AlF(3)-coating on the layered structure cannot ultimately stop the spinel formation. The observation of structure transition characteristics discussed in this paper provides direct explanation for the observed gradual capacity loss and poor rate performance of the layered composite. It also provides clues about how to improve the materials structure in order to improve electrochemical performance.


Nano Letters | 2011

Controlled Growth of Nanoparticles from Solution with In Situ Liquid Transmission Electron Microscopy

James E. Evans; Katherine Leigh Jungjohann; Nigel D. Browning; Ilke Arslan

Direct visualization of lead sulfide nanoparticle growth is demonstrated by selectively decomposing a chemical precursor from a multicomponent solution using in situ liquid transmission electron microscopy. We demonstrate reproducible control over growth mechanisms that dictate the final morphology of nanostructures while observing growth in real-time with subnanometer spatial resolution. Furthermore, while an intense electron beam can initiate nanoparticle growth, it is also shown that a laser can trigger the reaction independently of the imaging electrons.


ACS Nano | 2012

Direct in Situ Determination of the Mechanisms Controlling Nanoparticle Nucleation and Growth

Taylor J. Woehl; James E. Evans; Ilke Arslan; William D. Ristenpart; Nigel D. Browning

Although nanocrystal morphology is controllable using conventional colloidal synthesis, multiple characterization techniques are typically needed to determine key properties like the nucleation rate, induction time, growth rate, and the resulting morphology. Recently, researchers have demonstrated growth of nanocrystals by in situ electron beam reduction, offering direct observations of single nanocrystals and eliminating the need for multiple characterization techniques; however, they found nanocrystal morphologies consistent with two different growth mechanisms for the same electron beam parameters. Here we show that the electron beam current plays a role analogous to the concentration of reducing agent in conventional synthesis, by controlling the growth mechanism and final morphology of silver nanocrystals grown via in situ electron beam reduction. We demonstrate that low beam currents encourage reaction limited growth that yield nanocrystals with faceted structures, while higher beam currents encourage diffusion limited growth that yield spherical nanocrystals. By isolating these two growth regimes, we demonstrate a new level of control over nanocrystal morphology, regulated by the fundamental growth mechanism. We find that the induction threshold dose for nucleation is independent of the beam current, pixel dwell time, and magnification being used. Our results indicate that in situ electron microscopy data can be interpreted by classical models and that systematic dose experiments should be performed for all future in situ liquid studies to confirm the exact mechanisms underlying observations of nucleation and growth.


Nano Letters | 2013

Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries.

Meng Gu; Akihiro Kushima; Yuyan Shao; Ji-Guang Zhang; Jun Liu; Nigel D. Browning; Ju Li; Chongmin Wang

Nonlithium metals such as sodium have attracted wide attention as a potential charge carrying ion for rechargeable batteries. Using in situ transmission electron microscopy in combination with density functional theory calculations, we probed the structural and chemical evolution of SnO2 nanowire anodes in Na-ion batteries and compared them quantitatively with results from Li-ion batteries (Huang, J. Y.; et al. Science 2010, 330, 1515 - 1520). Upon Na insertion into SnO2, a displacement reaction occurs, leading to the formation of amorphous NaxSn nanoparticles dispersed in Na2O matrix. With further Na insertion, the NaxSn crystallized into Na15Sn4 (x = 3.75). Upon extraction of Na (desodiation), the NaxSn transforms to Sn nanoparticles. Associated with the dealloying, pores are found to form, leading to a structure of Sn particles confined in a hollow matrix of Na2O. These pores greatly increase electrical impedance, therefore accounting for the poor cyclability of SnO2. DFT calculations indicate that Na(+) diffuses 30 times slower than Li(+) in SnO2, in agreement with in situ TEM measurement. Insertion of Na can chemomechanically soften the reaction product to a greater extent than in lithiation. Therefore, in contrast to the lithiation of SnO2 significantly less dislocation plasticity was seen ahead of the sodiation front. This direct comparison of the results from Na and Li highlights the critical role of ionic size and electronic structure of different ionic species on the charge/discharge rate and failure mechanisms in these batteries.


ACS Nano | 2012

Nanoscale strontium titanate photocatalysts for overall water splitting.

Troy K. Townsend; Nigel D. Browning; Frank E. Osterloh

SrTiO(3) (STO) is a large band gap (3.2 eV) semiconductor that catalyzes the overall water splitting reaction under UV light irradiation in the presence of a NiO cocatalyst. As we show here, the reactivity persists in nanoscale particles of the material, although the process is less effective at the nanoscale. To reach these conclusions, Bulk STO, 30 ± 5 nm STO, and 6.5 ± 1 nm STO were synthesized by three different methods, their crystal structures verified with XRD and their morphology observed with HRTEM before and after NiO deposition. In connection with NiO, all samples split water into stoichiometric mixtures of H(2) and O(2), but the activity is decreasing from 28 μmol H(2) g(-1) h(-1) (bulk STO), to 19.4 μmol H(2) g(-1) h(-1) (30 nm STO), and 3.0 μmol H(2) g(-1) h(-1) (6.5 nm STO). The reasons for this decrease are an increase of the water oxidation overpotential for the smaller particles and reduced light absorption due to a quantum size effect. Overall, these findings establish the first nanoscale titanate photocatalyst for overall water splitting.


Journal of the American Chemical Society | 2011

Photocatalytic Water Oxidation with Nonsensitized IrO2 Nanocrystals under Visible and UV Light

F. Andrew Frame; Troy K. Townsend; Rachel L. Chamousis; Erwin M. Sabio; Th. Dittrich; Nigel D. Browning; Frank E. Osterloh

Rutile IrO(2) is known as being among the best electrocatalysts for water oxidation. Here we report on the unexpected photocatalytic water oxidation activity of 1.98 nm ± 0.11 nm succinic acid-stabilized IrO(2) nanocrystals. From aqueous persulfate and silver nitrate solution the nonsensitized particles evolve oxygen with initial rates up to 0.96 μmol min(-1), and with a quantum efficiency of at least 0.19% (measured at 530 nm). The catalytic process is driven by visible excitations from the Ir-d(t(2g)) to the Ir-d(e(g)) band (1.5-2.75 eV) and by ultraviolet excitations from the O-p band to the Ir-d(e(g)) (>3.0 eV) band. The formation of the photogenerated charge carriers can be directly observed with surface photovoltage spectroscopy. The results shed new light on the role of IrO(2) in dye- and semiconductor-sensitized water splitting systems.


Nano Letters | 2013

Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes.

Meng Gu; Lucas R. Parent; B. Layla Mehdi; Raymond R. Unocic; Matthew T. McDowell; Robert L. Sacci; Wu Xu; Justin G. Connell; Pinghong Xu; Patricia Abellan; Xilin Chen; Yaohui Zhang; Daniel E. Perea; James E. Evans; Lincoln J. Lauhon; Ji-Guang Zhang; Jun Liu; Nigel D. Browning; Yi Cui; Ilke Arslan; Chong Min Wang

Over the past few years, in situ transmission electron microscopy (TEM) studies of lithium ion batteries using an open-cell configuration have helped us to gain fundamental insights into the structural and chemical evolution of the electrode materials in real time. In the standard open-cell configuration, the electrolyte is either solid lithium oxide or an ionic liquid, which is point-contacted with the electrode. This cell design is inherently different from a real battery, where liquid electrolyte forms conformal contact with electrode materials. The knowledge learnt from open cells can deviate significantly from the real battery, calling for operando TEM technique with conformal liquid electrolyte contact. In this paper, we developed an operando TEM electrochemical liquid cell to meet this need, providing the configuration of a real battery and in a relevant liquid electrolyte. To demonstrate this novel technique, we studied the lithiation/delithiation behavior of single Si nanowires. Some of lithiation/delithation behaviors of Si obtained using the liquid cell are consistent with the results from the open-cell studies. However, we also discovered new insights different from the open cell configuration-the dynamics of the electrolyte and, potentially, a future quantitative characterization of the solid electrolyte interphase layer formation and structural and chemical evolution.


Advanced Structural and Chemical Imaging | 2015

Smart Align—a new tool for robust non-rigid registration of scanning microscope data

Lewys Jones; Hao Yang; Timothy J. Pennycook; Matthew J. Marshall; Sandra Van Aert; Nigel D. Browning; Martin R. Castell; Peter D. Nellist

Many microscopic investigations of materials may benefit from the recording of multiple successive images. This can include techniques common to several types of microscopy such as frame averaging to improve signal-to-noise ratios (SNR) or time series to study dynamic processes or more specific applications. In the scanning transmission electron microscope, this might include focal series for optical sectioning or aberration measurement, beam damage studies or camera-length series to study the effects of strain; whilst in the scanning tunnelling microscope, this might include bias-voltage series to probe local electronic structure. Whatever the application, such investigations must begin with the careful alignment of these data stacks, an operation that is not always trivial. In addition, the presence of low-frequency scanning distortions can introduce intra-image shifts to the data. Here, we describe an improved automated method of performing non-rigid registration customised for the challenges unique to scanned microscope data specifically addressing the issues of low-SNR data, images containing a large proportion of crystalline material and/or local features of interest such as dislocations or edges. Careful attention has been paid to artefact testing of the non-rigid registration method used, and the importance of this registration for the quantitative interpretation of feature intensities and positions is evaluated.


Angewandte Chemie | 2014

A Single‐Site Platinum CO Oxidation Catalyst in Zeolite KLTL: Microscopic and Spectroscopic Determination of the Locations of the Platinum Atoms

Joseph D. Kistler; Nutchapon Chotigkrai; Pinghong Xu; Bryan Enderle; Piyasan Praserthdam; Cong-Yan Chen; Nigel D. Browning; Bruce C. Gates

A stable site-isolated mononuclear platinum catalyst with a well-defined structure is presented. Platinum complexes supported in zeolite KLTL were synthesized from [Pt(NH3)4](NO3)2, oxidized at 633 K, and used to catalyze CO oxidation. IR and X-ray absorption spectra and electron micrographs determine the structures and locations of the platinum complexes in the zeolite pores, demonstrate the platinum-support bonding, and show that the platinum remained site isolated after oxidation and catalysis.


ACS Nano | 2014

The Importance of Nanometric Passivating Films on Cathodes for Li–Air Batteries

Brian D. Adams; Robert Black; Claudio Radtke; Zach Williams; B. L. Mehdi; Nigel D. Browning; Linda F. Nazar

Recently, there has been a transition from fully carbonaceous positive electrodes for the aprotic lithium oxygen battery to alternative materials and the use of redox mediator additives, in an attempt to lower the large electrochemical overpotentials associated with the charge reaction. However, the stabilizing or catalytic effect of these materials can become complicated due to the presence of major side-reactions observed during dis(charge). Here, we isolate the charge reaction from the discharge by utilizing electrodes prefilled with commercial lithium peroxide with a crystallite size of about 200-800 nm. Using a combination of S/TEM, online mass spectrometry, XPS, and electrochemical methods to probe the nature of surface films on carbon and conductive Ti-based nanoparticles, we show that oxygen evolution from lithium peroxide is strongly dependent on their surface properties. Insulating TiO2 surface layers on TiC and TiN - even as thin as 3 nm-can completely inhibit the charge reaction under these conditions. On the other hand, TiC, which lacks this oxide film, readily facilitates oxidation of the bulk Li2O2 crystallites, at a much lower overpotential relative to carbon. Since oxidation of lithium oxygen battery cathodes is inevitable in these systems, precise control of the surface chemistry at the nanoscale becomes of upmost importance.

Collaboration


Dive into the Nigel D. Browning's collaboration.

Top Co-Authors

Avatar

James E. Evans

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. Layla Mehdi

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bruce C. Gates

University of California

View shared research outputs
Top Co-Authors

Avatar

Andrew Stevens

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ji-Guang Zhang

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ilke Arslan

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Meng Gu

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Patricia Abellan

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Libor Kovarik

Environmental Molecular Sciences Laboratory

View shared research outputs
Top Co-Authors

Avatar

Pinghong Xu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge