Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nigel Hardy is active.

Publication


Featured researches published by Nigel Hardy.


Metabolomics | 2007

Proposed minimum reporting standards for chemical analysis

Lloyd W. Sumner; Alexander Amberg; Dave Barrett; Michael H. Beale; Richard D. Beger; Clare A. Daykin; Teresa W.-M. Fan; Oliver Fiehn; Royston Goodacre; Julian L. Griffin; Thomas Hankemeier; Nigel Hardy; James M. Harnly; Richard M. Higashi; Joachim Kopka; Andrew N. Lane; John C. Lindon; Philip J. Marriott; Andrew W. Nicholls; Michael D. Reily; John J. Thaden; Mark R. Viant

There is a general consensus that supports the need for standardized reporting of metadata or information describing large-scale metabolomics and other functional genomics data sets. Reporting of standard metadata provides a biological and empirical context for the data, facilitates experimental replication, and enables the re-interrogation and comparison of data by others. Accordingly, the Metabolomics Standards Initiative is building a general consensus concerning the minimum reporting standards for metabolomics experiments of which the Chemical Analysis Working Group (CAWG) is a member of this community effort. This article proposes the minimum reporting standards related to the chemical analysis aspects of metabolomics experiments including: sample preparation, experimental analysis, quality control, metabolite identification, and data pre-processing. These minimum standards currently focus mostly upon mass spectrometry and nuclear magnetic resonance spectroscopy due to the popularity of these techniques in metabolomics. However, additional input concerning other techniques is welcomed and can be provided via the CAWG on-line discussion forum at http://msi-workgroups.sourceforge.net/ or http://[email protected]. Further, community input related to this document can also be provided via this electronic forum.


Nature Biotechnology | 2008

Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project

Chris F. Taylor; Dawn Field; Susanna-Assunta Sansone; Jan Aerts; Rolf Apweiler; Michael Ashburner; Catherine A. Ball; Pierre Alain Binz; Molly Bogue; Tim Booth; Alvis Brazma; Ryan R. Brinkman; Adam Clark; Eric W. Deutsch; Oliver Fiehn; Jennifer Fostel; Peter Ghazal; Frank Gibson; Tanya Gray; Graeme Grimes; John M. Hancock; Nigel Hardy; Henning Hermjakob; Randall K. Julian; Matthew Kane; Carsten Kettner; Christopher R. Kinsinger; Eugene Kolker; Martin Kuiper; Nicolas Le Novère

The Minimum Information for Biological and Biomedical Investigations (MIBBI) project aims to foster the coordinated development of minimum-information checklists and provide a resource for those exploring the range of extant checklists.


Nature Biotechnology | 2004

A proposed framework for the description of plant metabolomics experiments and their results

Helen Jenkins; Nigel Hardy; Manfred Beckmann; John Draper; A. R. Smith; Janet Taylor; Oliver Fiehn; Royston Goodacre; Raoul J. Bino; Robert D. Hall; Joachim Kopka; Geoffrey A. Lane; Markus Lange; Jang R Liu; Pedro Mendes; Basil J. Nikolau; Stephen G. Oliver; Norman W. Paton; Sue Rhee; Ute Roessner-Tunali; Kazuki Saito; Jørn Smedsgaard; Lloyd W. Sumner; Trevor L. Wang; Sean Walsh; Eve Syrkin Wurtele; Douglas B. Kell

The study of the metabolite complement of biological samples, known as metabolomics, is creating large amounts of data, and support for handling these data sets is required to facilitate meaningful analyses that will answer biological questions. We present a data model for plant metabolomics known as ArMet (architecture for metabolomics). It encompasses the entire experimental time line from experiment definition and description of biological source material, through sample growth and preparation to the results of chemical analysis. Such formal data descriptions, which specify the full experimental context, enable principled comparison of data sets, allow proper interpretation of experimental results, permit the repetition of experiments and provide a basis for the design of systems for data storage and transmission. The current design and example implementations are freely available (http://www.armet.org/). We seek to advance discussion and community adoption of a standard for metabolomics, which would promote principled collection, storage and transmission of experiment data.


Metabolomics | 2007

The metabolomics standards initiative (MSI)

Oliver Fiehn; Don Robertson; Jules Griffin; Mariet vab der Werf; Basil J. Nikolau; Norman Morrison; Lloyd W. Sumner; Roy Goodacre; Nigel Hardy; Chris F. Taylor; Jennifer Fostel; Bruce S. Kristal; Rima Kaddurah-Daouk; Pedro Mendes; Ben van Ommen; John C. Lindon; Susanna-Assunta Sansone

In 2005, the Metabolomics Standards Initiative has been formed. An outline and general introduction is provided to inform about the history, structure, working plan and intentions of this initiative. Comments on any of the suggested minimal reporting standards are welcome to be sent to the open email list [email protected]


Nature Biotechnology | 2005

Summary recommendations for standardization and reporting of metabolic analyses.

John C. Lindon; Jeremy K. Nicholson; Elaine Holmes; Hector C. Keun; Andrew Craig; Jake T. M. Pearce; Stephen J. Bruce; Nigel Hardy; Susanna-Assunta Sansone; Henrik Antti; Pär Jonsson; Clare A. Daykin; Mahendra Navarange; Richard D. Beger; Elwin Verheij; Alexander Amberg; Dorrit Baunsgaard; Glenn H. Cantor; Lois D. Lehman-McKeeman; Mark Earll; Svante Wold; Erik Johansson; John N. Haselden; Kerstin Kramer; Craig E. Thomas; Johann Lindberg; Ian D. Wilson; Michael D. Reily; Donald G. Robertson; Hans Senn

The Standard Metabolic Reporting Structures (SMRS) working group outlines its vision for an open,community-driven specification for the standardization and reporting of metabolic studies.The Standard Metabolic Reporting Structures (SMRS) working group outlines its vision for an open,community-driven specification for the standardization and reporting of metabolic studies.


The Plant Cell | 2002

Plant Metabolomics: The Missing Link in Functional Genomics Strategies

Robert D. Hall; Michael H. Beale; Oliver Fiehn; Nigel Hardy; Lloyd W. Sumner; Raoul J. Bino

After the establishment of technologies for high-throughput DNA sequencing (genomics), gene expression analysis (transcriptomics), and protein analysis (proteomics), the remaining functional genomics challenge is that of metabolomics . Metabolomics is the term coined for essentially comprehensive,


Nature Biotechnology | 2007

The Metabolomics Standards Initiative

Susanna-Assunta Sansone; Teresa Fan; Royston Goodacre; Julian L. Griffin; Nigel Hardy; Rima Kaddurah-Daouk; Bruce S. Kristal; John C. Lindon; Pedro Mendes; Norman Morrison; Basil J. Nikolau; Don Robertson; Lloyd W. Sumner; Chris F. Taylor; Mariët J. van der Werf; Ben van Ommen; Oliver Fiehn

In 2005, the Metabolomics Standards Initiative has been formed. An outline and general introduction is provided to inform about the history, structure, working plan and intentions of this initiative. Comments on any of the suggested minimal reporting standards are welcome to be sent to the open email list [email protected]


Nature Biotechnology | 2007

The Functional Genomics Experiment model (FuGE): an extensible framework for standards in functional genomics

Andrew R. Jones; Michael R. Miller; Ruedi Aebersold; Rolf Apweiler; Catherine A. Ball; Alvis Brazma; James DeGreef; Nigel Hardy; Henning Hermjakob; Simon J. Hubbard; Peter Hussey; Mark Igra; Helen Jenkins; Randall K. Julian; Kent Laursen; Stephen G. Oliver; Norman W. Paton; Susanna-Assunta Sansone; Ugis Sarkans; Christian J. Stoeckert; Chris F. Taylor; Patricia L. Whetzel; Joseph White; Paul T. Spellman; Angel Pizarro

The Functional Genomics Experiment data model (FuGE) has been developed to facilitate convergence of data standards for high-throughput, comprehensive analyses in biology. FuGE models the components of an experimental activity that are common across different technologies, including protocols, samples and data. FuGE provides a foundation for describing entire laboratory workflows and for the development of new data formats. The Microarray Gene Expression Data society and the Proteomics Standards Initiative have committed to using FuGE as the basis for defining their respective standards, and other standards groups, including the Metabolomics Standards Initiative, are evaluating FuGE in their development efforts. Adoption of FuGE by multiple standards bodies will enable uniform reporting of common parts of functional genomics workflows, simplify data-integration efforts and ease the burden on researchers seeking to fulfill multiple minimum reporting requirements. Such advances are important for transparent data management and mining in functional genomics and systems biology.


Omics A Journal of Integrative Biology | 2008

The First RSBI (ISA-TAB) Workshop: 'Can a Simple Format Work for Complex Studies?'

Susanna-Assunta Sansone; Philippe Rocca-Serra; Marco Brandizi; Alvis Brazma; Dawn Field; Jennifer Fostel; Andrew G. Garrow; Jack A. Gilbert; Federico Goodsaid; Nigel Hardy; Phil Jones; Allyson L. Lister; Michael R. Miller; Norman Morrison; Tim F. Rayner; Nataliya Sklyar; Chris F. Taylor; Weida Tong; Guy Warner; Stefan Wiemann

This article summarizes the motivation for, and the proceedings of, the first ISA-TAB workshop held December 6-8, 2007, at the EBI, Cambridge, UK. This exploratory workshop, organized by members of the Microarray Gene Expression Data (MGED) Societys Reporting Structure for Biological Investigations (RSBI) working group, brought together a group of developers of a range of collaborative systems to discuss the use of a common format to address the pressing need of reporting and communicating data and metadata from biological, biomedical, and environmental studies employing combinations of genomics, transcriptomics, proteomics, and metabolomics technologies along with more conventional methodologies. The expertise of the participants comprised database development, data management, and hands-on experience in the development of data communication standards. The workshops outcomes are set to help formalize the proposed Investigation, Study, Assay (ISA)-TAB tab-delimited format for representing and communicating experimental metadata. This article is part of the special issue of OMICS on the activities of the Genomics Standards Consortium (GSC).


Metabolomics | 2007

Proposed reporting requirements for the description of NMR-based metabolomics experiments

Denis V. Rubtsov; Helen Jenkins; Christian Ludwig; John M. Easton; Mark R. Viant; Ulrich L. Günther; Julian L. Griffin; Nigel Hardy

The amount of data generated by NMR-based metabolomic experiments is increasing rapidly. Furthermore, diverse techniques increase the need for informative and comprehensive meta-data. These factors present a challenge in the dissemination, interpretation, reviewing and comparison of experimental results using this technology. Thus, there is a strong case for unification and standardisation of the data representation for both academia and industry. Here, a systems analysis of an NMR-based metabolomics experiment is presented in order to reveal the reporting requirements. An in-depth analysis of the NMR component of a metabolomics experiment has been produced, and a first round of data standard development completed. This has focussed on both one- and two-dimensional 1H NMR experiments, but is also applicable to higher dimensions and other nuclei. We also report the modelling of this schema using Unified Modelling Language (UML), and have extended this to a proof-of-concept implementation of the standard as an XML schema.

Collaboration


Dive into the Nigel Hardy's collaboration.

Top Co-Authors

Avatar

Mark H. Lee

Aberystwyth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris F. Taylor

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

C. Lu

Aberystwyth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oliver Fiehn

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge