Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nigel Hoggard is active.

Publication


Featured researches published by Nigel Hoggard.


British Journal of Nutrition | 2000

Ontogeny of the expression of leptin and its receptor in the murine fetus and placenta.

Nigel Hoggard; Leif Hunter; Richard G. Lea; Paul Trayhurn; Julian G. Mercer

Leptin is a 167-amino acid protein that is secreted from adipose cells and expressed in placental tissues. It is important nutritionally in the regulation of energy balance, but also has other functions such as a role in reproduction. To investigate the function of the leptin system in fetal development we examined, primarily by in-situ hybridization and immunohistochemistry, the expression (both mRNA and protein) of leptin and its receptor (including the signalling splice variant) in tissues from 11.5, 13.5, 16.5 and 18.5 d postcoitus murine fetuses and associated placentas. We detected leptin mRNA (at low levels) and protein predominantly in the cytotrophoblasts of the labyrinth part of the placenta, an area of nutrient exchange between the developing fetus and the placenta, and in the trophoblast giant cells situated in the junctional zone at the maternal interface. In addition, leptin was strongly expressed in the fetal cartilage-bone and at a lower level in the hair follicles, heart, and liver of the murine fetus at differing stages of development. The leptin receptor, including the signalling splice variant, was also identified in specific fetal tissues. The physiological importance of expression of both leptin and the leptin receptor (OB-R and OB-Rb) in the placenta remains to be determined. In addition, the high levels of expression of leptin and its receptor in discrete areas of the murine fetus suggest that leptin has a critical role in fetal development.


PLOS ONE | 2014

The Development of Diet-Induced Obesity and Glucose Intolerance in C57Bl/6 Mice on a High-Fat Diet Consists of Distinct Phases

Lynda M. Williams; Fiona M. Campbell; Janice E. Drew; Christiane E. Koch; Nigel Hoggard; William D. Rees; Torkamol Kamolrat; Ha Thi Ngo; Inger-Lise Steffensen; Stuart R. Gray; Alexander Tups

High–fat (HF) diet-induced obesity and insulin insensitivity are associated with inflammation, particularly in white adipose tissue (WAT). However, insulin insensitivity is apparent within days of HF feeding when gains in adiposity and changes in markers of inflammation are relatively minor. To investigate further the effects of HF diet, C57Bl/6J mice were fed either a low (LF) or HF diet for 3 days to 16 weeks, or fed the HF-diet matched to the caloric intake of the LF diet (PF) for 3 days or 1 week, with the time course of glucose tolerance and inflammatory gene expression measured in liver, muscle and WAT. HF fed mice gained adiposity and liver lipid steadily over 16 weeks, but developed glucose intolerance, assessed by intraperitoneal glucose tolerance tests (IPGTT), in two phases. The first phase, after 3 days, resulted in a 50% increase in area under the curve (AUC) for HF and PF mice, which improved to 30% after 1 week and remained stable until 12 weeks. Between 12 and 16 weeks the difference in AUC increased to 60%, when gene markers of inflammation appeared in WAT and muscle but not in liver. Plasma proteomics were used to reveal an acute phase response at day 3. Data from PF mice reveals that glucose intolerance and the acute phase response are the result of the HF composition of the diet and increased caloric intake respectively. Thus, the initial increase in glucose intolerance due to a HF diet occurs concurrently with an acute phase response but these effects are caused by different properties of the diet. The second increase in glucose intolerance occurs between 12 - 16 weeks of HF diet and is correlated with WAT and muscle inflammation. Between these times glucose tolerance remains stable and markers of inflammation are undetectable.


Journal of Cellular Physiology | 2011

Leptin up‐regulates pro‐inflammatory cytokines in discrete cells within mouse colon

Sara Padidar; Andrew J. Farquharson; Lynda M. Williams; Eirini Kelaiditi; Nigel Hoggard; John R. Arthur; Janice E. Drew

Dysregulation of leptin associated with obesity is implicated in obesity‐related colon cancer, but mechanisms are elusive. Increased adiposity and elevated plasma leptin are associated with perturbed metabolism in colon and leptin receptors are expressed on colon epithelium. We hypothesise that obesity increases the sensitivity of the colon to cancer by disrupting leptin‐regulated gene targets within colon tissues. PCR arrays were used to firstly identify leptin responsive genes and secondly to identify responses to leptin challenge in wild‐type mice, or those lacking leptin (ob/ob). Leptin‐regulated genes were localised in the colon using in situ hybridisation. IL6, IL1β and CXCL1 were up‐regulated by leptin and localised to discrete cells in gut epithelium, lamina propria, muscularis and at the peritoneal serosal surface. Leptin regulates pro‐inflammatory genes such as IL6, IL1β and CXCL1, and might increase the risk of colon cancer among obese individuals. J. Cell. Physiol. 226: 2123–2130, 2011.


Journal of Nutritional Science | 2013

A single supplement of a standardised bilberry ( Vaccinium myrtillus L.) extract (36 % wet weight anthocyanins) modifies glycaemic response in individuals with type 2 diabetes controlled by diet and lifestyle

Nigel Hoggard; Morven Cruickshank; Kim-Marie Moar; Charles S. Bestwick; Jens J. Holst; Wendy R. Russell; Graham W. Horgan

Dietary strategies for alleviating health complications associated with type 2 diabetes (T2D) are being pursued as alternatives to pharmaceutical interventions. Berries such as bilberries (Vaccinium myrtillus L.) that are rich in polyphenols may influence carbohydrate digestion and absorption and thus postprandial glycaemia. In addition, berries have been reported to alter incretins as well as to have antioxidant and anti-inflammatory properties that may also affect postprandial glycaemia. The present study investigated the acute effect of a standardised bilberry extract on glucose metabolism in T2D. Male volunteers with T2D (n 8; BMI 30 (sd 4) kg/m2) controlling their diabetes by diet and lifestyle alone were given a single oral capsule of either 0·47 g standardised bilberry extract (36 % (w/w) anthocyanins) which equates to about 50 g of fresh bilberries or placebo followed by a polysaccharide drink (equivalent to 75 g glucose) in a double-blinded cross-over intervention with a 2-week washout period. The ingestion of the bilberry extract resulted in a significant decrease in the incremental AUC for both glucose (P = 0·003) and insulin (P = 0·03) compared with the placebo. There was no change in the gut (glucagon-like peptide-1, gastric inhibitory polypeptide), pancreatic (glucagon, amylin) or anti-inflammatory (monocyte chemotactic protein-1) peptides. In addition there was no change in the antioxidant (Trolox equivalent antioxidant capacity, ferric-reducing ability of plasma) responses measured between the volunteers receiving the bilberry extract and the placebo. In conclusion the present study demonstrates for the first time that the ingestion of a concentrated bilberry extract reduces postprandial glycaemia and insulin in volunteers with T2D. The most likely mechanism for the lower glycaemic response involves reduced rates of carbohydrate digestion and/or absorption.


Obesity | 2012

Using Gene Expression to Predict Differences in the Secretome of Human Omental vs. Subcutaneous Adipose Tissue

Nigel Hoggard; Morven Cruickshank; Kim-Marie Moar; Shabina Bashir; Claus-Dieter Mayer

The objective of this study was to characterize differences in the secretome of human omental compared with subcutaneous adipose tissue using global gene expression profiling. Gene expression was measured using Affymetrix microarrays (Affymetrix, Santa Clara, CA) in subcutaneous and omental adipose tissue in two independent experiments (n = 5 and n = 3 independent subjects; n = 16 arrays in total, 2 for each subject). Predictive bioinformatic algorithms were employed to identify secreted proteins. Microarray analysis identified 22 gene probe sets whose expression was significantly different with a fold change (FC) greater than 5 in expression in both experiments between omental and subcutaneous adipose tissue. Using bioinformatic predictive programs 11 of these 22 probe sets potentially coded for secreted proteins. Pathway network analysis of the secreted proteins showed that three of the proteins are part of a common pathway network. These proteins gremlin 1 (GREM1), pleiotrophin (PTN), and secretory leukocyte peptidase inhibitor (SLPI) are expressed respectively 43×, 23×, and 5× in omental adipose tissue relative to subcutaneous adipose tissue as determined by real‐time PCR. The presence of GREM1, PTN, and SLPI protein in human adipose tissue was confirmed by western blotting. All three proteins are expressed in the human Simpson‐Golabi‐Behmel syndrome (SGBS) preadipocyte cell line. The expression of GREM1, PTN, and SLPI changed with the differentiation of the preadipocytes into mature adipocytes. Gene expression coupled with predictive bioinformatic algorithms have identified several genes coding for secreted proteins which are expressed differently in omental adipose tissue compared to subcutaneous adipose tissue proving a valid alternative approach to help further define the adipocyte secretome.


British Journal of Nutrition | 2013

The dietary flavonoids naringenin and quercetin acutely impair glucose metabolism in rodents possibly via inhibition of hypothalamic insulin signalling

Christiane E. Koch; Goutham K. Ganjam; Juliane Steger; Karen Legler; Sigrid Stöhr; Daniela Schumacher; Nigel Hoggard; Gerhard Heldmaier; Alexander Tups

Secondary metabolites of herbs and spices are widely used as an alternative strategy in the therapy of various diseases. The polyphenols naringenin, quercetin and curcumin have been characterised as anti-diabetic agents. Conversely, in vitro, naringenin and quercetin are described to inhibit phosphoinositide-3-kinase (PI3K), an enzyme that is essential for the neuronal control of whole body glucose homoeostasis. Using both in vitro and in vivo experiments, we tested whether the inhibitory effect on PI3K occurs in neurons and if it might affect whole body glucose homoeostasis. Quercetin was found to inhibit basal and insulin-induced phosphorylation of Akt (Ser473), a downstream target of PI3K, in HT-22 cells, whereas naringenin and curcumin had no effect. In Djungarian hamsters (Phodopus sungorus) naringenin and quercetin (10 mg/kg administered orally) diminished insulin-induced phosphorylation of Akt (Ser473) in the arcuate nucleus, indicating a reduction in hypothalamic PI3K activity. In agreement with this finding, glucose tolerance in naringenin-treated hamsters (oral) and mice (oral and intracerebroventricular) was reduced compared with controls. Dietary quercetin also impaired glucose tolerance, whereas curcumin was ineffective. Circulating levels of insulin and insulin-like growth factor-binding protein were not affected by the polyphenols. Oral quercetin reduced the respiratory quotient, suggesting that glucose utilisation was impaired after treatment. These data demonstrate that low doses of naringenin and quercetin acutely and potently impair glucose homoeostasis. This effect may be mediated by inhibition of hypothalamic PI3K signalling. Whether chronic impairments in glucose homoeostasis occur after long-term application remains to be identified.


Digestive Diseases and Sciences | 2011

Impact of obesity and leptin on protein expression profiles in mouse colon.

Sara Padidar; Andrew J. Farquharson; Lynda M. Williams; Nigel Hoggard; Martin D. Reid; Gary Duncan; Janice E. Drew

BackgroundElevated leptin levels in obesity are associated with increased risk of colon pathology, implicating leptin signaling in colon disease. However, leptin-regulated processes in the colon are currently uncharacterized. Previously, we demonstrated that leptin receptors are expressed on colon epithelium and that increased adiposity and elevated plasma leptin in rats are associated with perturbed metabolism in colon tissue. Thus, we hypothesize that obesity disrupts expression of proteins regulated by leptin in the colon.MethodsA proteomic analysis was conducted to investigate firstly, differences in the colon of mice lacking leptin and leptin signaling (ob/ob and db/db, respectively) by comparing protein expression profiles with wild-type mice. Secondly, responses to leptin challenge in wild-type mice and ob/ob mice were compared to identify leptin-regulated proteins and associated cellular processes.ResultsForty proteins were identified with significantly altered expression patterns associated with differences in leptin status in comparisons between all groups of mice. These proteins are associated with calcium binding, cell cycle, cell proliferation, electron transport chain, energy metabolism, protein folding and transport, redox regulation, structural proteins, and proteins involved in transport and regulation of mucus production.ConclusionsThis study provides evidence that obesity and leptin significantly alter protein profiles of a number of proteins linked to cellular processes in colon tissues that may be linked to the increased risk of colon pathology associated with obesity.


Frontiers in Genetics | 2013

A Comparative Approach to Understanding Tissue-Specific Expression of Uncoupling Protein 1 Expression in Adipose Tissue

Andrew Shore; Richard D. Emes; Frank Wessely; Paul R. Kemp; Clemento Cillo; Maria D'Armiento; Nigel Hoggard; Michael A. Lomax

The thermoregulatory function of brown adipose tissue (BAT) is due to the tissue-specific expression of uncoupling protein 1 (UCP1) which is thought to have evolved in early mammals. We report that a CpG island close to the UCP1 transcription start site is highly conserved in all 29 vertebrates examined apart from the mouse and xenopus. Using methylation sensitive restriction digest and bisulfite mapping we show that the CpG island in both the bovine and human is largely un-methylated and is not related to differences in UCP1 expression between white and BAT. Tissue-specific expression of UCP1 has been proposed to be regulated by a conserved 5′ distal enhancer which has been reported to be absent in marsupials. We demonstrate that the enhancer, is also absent in five eutherians as well as marsupials, monotremes, amphibians, and fish, is present in pigs despite UCP1 having become a pseudogene, and that absence of the enhancer element does not relate to BAT-specific UCP1 expression. We identify an additional putative 5′ regulatory unit which is conserved in 14 eutherian species but absent in other eutherians and vertebrates, but again unrelated to UCP1 expression. We conclude that despite clear evidence of conservation of regulatory elements in the UCP1 5′ untranslated region, this does not appear to be related to species or tissues-specific expression of UCP1.


International Journal of General Medicine | 2012

Serum levels of RBP4 and adipose tissue levels of PTP1B are increased in obese men resident in northeast Scotland without associated changes in ER stress response genes

Nigel Hoggard; Abdelali Agouni; Nimesh Mody; Mirela Delibegovic

Background Retinol-binding protein 4 (RBP4) is an adipokine identified as a marker of insulin resistance in mice and humans. Protein tyrosine phosphatase 1B (PTP1B) expression levels as well as other genes involved in the endoplasmic reticulum (ER) stress response are increased in adipose tissue of obese, high-fat-diet-fed mice. In this study we investigated if serum and/or adipose tissue RBP4 protein levels and expression levels of PTP1B and other ER stress-response genes are altered in obese and obese/diabetic men resident in northeast Scotland. Methods We studied three groups of male volunteers: (1) normal/overweight (body mass index [BMI] < 30), (2) obese (BMI > 30), and (3) obese/diabetic (BMI > 30) controlling their diabetes either by diet or the antidiabetic drug metformin. We analyzed their serum and adipose tissue RBP4 protein levels as well as adipose tissue mRNA expression of PTP1B, binding immunoglobulin protein (BIP), activated transcription factor 4 (ATF4), and glucose-regulated protein 94 (GRP94) alongside other markers of adiposity (percentage body fat, leptin, cholesterol, triglycerides) and insulin resistance (oral glucose tolerance tests, insulin, homeostatic model assessment–insulin resistance, C-reactive protein, and adiponectin). Results We found that obese Scottish subjects had significantly higher serum RBP4 protein levels in comparison to the normal/overweight subjects (P < 0.01). Serum RBP4 levels were normalized in obese/diabetic subjects treated with diet or metformin (P < 0.05). Adipose tissue RBP4 protein levels were comparable between all three groups of subjects as were serum and adipose transthyretin levels. Adipose tissue PTP1B mRNA levels were increased in obese subjects in comparison to normal/overweight subjects (P < 0.05); however diet and/or metformin treatment did not reverse this effect. Adipose tissue BIP, ATF4, and GRP94 expression levels were unchanged in obese and obese/diabetic subjects. Conclusions Human obesity results in an increase in serum but not adipose tissue RBP4 protein levels, and these are normalized in obese/diabetic subjects, which exhibit improvements in insulin sensitivity through diet or metformin treatment. However, while adipose tissue PTP1B mRNA levels increase in obese Scottish subjects, these remain high in obese/diabetics on diet or metformin treatment.


British Journal of Nutrition | 2018

A randomised, double-blind, cross-over trial to evaluate bread, in which gluten has been pre-digested by prolyl endoprotease treatment, in subjects self-reporting benefits of adopting a gluten-free or low-gluten diet

Dinka Rees; Grietje Holtrop; Gemma Chope; Kim-Marie Moar; Morven Cruickshank; Nigel Hoggard

The aim of the present study was to determine if the enzyme Aspergillus niger prolyl endoprotease (ANPEP), which degrades the immunogenic proline-rich residues in gluten peptides, can be used in the development of new wheat products, suitable for gluten-sensitive (GS) individuals. We have carried out a double-blind, randomised, cross-over trial with two groups of adults; subjects, self-reporting benefits of adopting a gluten-free or low-gluten diet (GS, n 16) and a control non-GS group (n 12). For the trial, volunteers consumed four wheat breads: normal bread, bread treated with 0·8 or 1 % ANPEP and low-protein bread made from biscuit flour. Compared with controls, GS subjects had a favourable cardiovascular lipid profile - lower LDL (4·0 (sem 0·3) v. 2·8 (sem 0·2) mmol/l; P=0·008) and LDL:HDL ratio (3·2 (sem 0·4) v. 1·8 (sem 0·2); P=0·005) and modified haematological profile. The majority of the GS subjects followed a low-gluten lifestyle, which helps to reduce the gastrointestinal (GI) symptoms severity. The low-gluten lifestyle does not have any effect on the quality of life, fatigue or mental state of this population. Consumption of normal wheat bread increased GI symptoms in GS subjects compared with their habitual diet. ANPEP lowered the immunogenic gluten in the treated bread by approximately 40 %. However, when compared with the control bread for inducing GI symptoms, no treatment effects were apparent. ANPEP can be applied in the production of bread with taste, texture and appearance comparable with standard bread.

Collaboration


Dive into the Nigel Hoggard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leif Hunter

Rowett Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge