Nigel L. Hywel-Jones
Biotec
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nigel L. Hywel-Jones.
Studies in Mycology | 2007
Gi-Ho Sung; Nigel L. Hywel-Jones; Jae-Mo Sung; J. Jennifer Luangsa-ard; Bhushan Shrestha; Joseph W. Spatafora
Cordyceps, comprising over 400 species, was historically classified in the Clavicipitaceae, based on cylindrical asci, thickened ascus apices and filiform ascospores, which often disarticulate into part-spores. Cordyceps was characterized by the production of well-developed often stipitate stromata and an ecology as a pathogen of arthropods and Elaphomyces with infrageneric classifications emphasizing arrangement of perithecia, ascospore morphology and host affiliation. To refine the classification of Cordyceps and the Clavicipitaceae, the phylogenetic relationships of 162 taxa were estimated based on analyses consisting of five to seven loci, including the nuclear ribosomal small and large subunits (nrSSU and nrLSU), the elongation factor 1α (tef1), the largest and the second largest subunits of RNA polymerase II (rpb1 and rpb2), β-tubulin (tub), and mitochondrial ATP6 (atp6). Our results strongly support the existence of three clavicipitaceous clades and reject the monophyly of both Cordyceps and Clavicipitaceae. Most diagnostic characters used in current classifications of Cordyceps (e.g., arrangement of perithecia, ascospore fragmentation, etc.) were not supported as being phylogenetically informative; the characters that were most consistent with the phylogeny were texture, pigmentation and morphology of stromata. Therefore, we revise the taxonomy of Cordyceps and the Clavicipitaceae to be consistent with the multi-gene phylogeny. The family Cordycipitaceae is validated based on the type of Cordyceps, C. militaris, and includes most Cordyceps species that possess brightly coloured, fleshy stromata. The new family Ophiocordycipitaceae is proposed based on Ophiocordyceps Petch, which we emend. The majority of species in this family produce darkly pigmented, tough to pliant stromata that often possess aperithecial apices. The new genus Elaphocordyceps is proposed for a subclade of the Ophiocordycipitaceae, which includes all species of Cordyceps that parasitize the fungal genus Elaphomyces and some closely related species that parasitize arthropods. The family Clavicipitaceae s. s. is emended and includes the core clade of grass symbionts (e.g., Balansia, Claviceps, Epichloë, etc.), and the entomopathogenic genus Hypocrella and relatives. In addition, the new genus Metacordyceps is proposed for Cordyceps species that are closely related to the grass symbionts in the Clavicipitaceae s. s. Metacordyceps includes teleomorphs linked to Metarhizium and other closely related anamorphs. Two new species are described, and lists of accepted names for species in Cordyceps, Elaphocordyceps, Metacordyceps and Ophiocordyceps are provided.
Molecular Ecology | 2007
Joseph W. Spatafora; Gi-Ho Sung; Jae-Mo Sung; Nigel L. Hywel-Jones; James F. White
Grass‐associated fungi (grass symbionts) in the family Clavicipitaceae (Ascomycota, Hypocreales) are species whose host range is restricted to the plant family Poaceae and rarely Cyperaceae. The best‐characterized species include Claviceps purpurea (ergot of rye) and Neotyphodium coenophialum (endophyte of tall fescue). They have been the focus of considerable research due to their importance in agricultural and grassland ecosystems and the diversity of their bioactive secondary metabolites. Here we show through multigene phylogenetic analyses and ancestral character state reconstruction that the grass symbionts in Clavicipitaceae are a derived group that originated from an animal pathogen through a dynamic process of interkingdom host jumping. The closest relatives of the grass symbionts include the genera Hypocrella, a pathogen of scale insects and white flies, and Metarhizium, a generalist arthropod pathogen. These data do not support the monophyly of Clavicipitaceae, but place it as part of a larger clade that includes Hypocreaceae, a family that contains mainly parasites of other fungi. A minimum of 5–8 independent and unidirectional interkingdom host jumps has occurred among clavicipitaceous fungi, including 3–5 to fungi, 1–2 to animals, and 1 to plants. These findings provide a new evolutionary context for studying the biology of the grass symbionts, their role in plant ecology, and the evolution of host affiliation in fungal symbioses.
Fungal Biology | 2005
J. Jennifer Luangsa-Ard; Nigel L. Hywel-Jones; Leka Manoch; Robert A. Samson
Phylogenetic relationships of Paecilomyces sect. Isarioidea species were analysed using the beta-tubulin gene and ITS rDNA. Maximum parsimony analyses showed that the section does not form a natural taxonomic group and is polyphyletic within the Hypocreales. However, a group was recognized, designated as the Isaria clade, to be monophyletic comprising of the following Paecilomyces species: P. amoeneroseus, P. cateniannulatus, P. cateniobliquus, P. cicadae, P. coleopterorus, P. farinosus, P. fumosoroseus, P. ghanensis, P. javanicus and P. tenuipes. Some of these species have teleomorphs in Cordyceps.
Fems Microbiology Letters | 2011
J. Jennifer Luangsa-ard; Jos Houbraken; Tineke van Doorn; Seung-Beom Hong; Andrew M. Borman; Nigel L. Hywel-Jones; Robert A. Samson
Paecilomyces lilacinus was described more than a century ago and is a commonly occurring fungus in soil. However, in the last decade this fungus has been increasingly found as the causal agent of infections in man and other vertebrates. Most cases of disease are described from patients with compromised immune systems or intraocular lens implants. In this study, we compared clinical isolates with strains isolated from soil, insects and nematodes using 18S rRNA gene, internal transcribed spacer (ITS) and partial translation elongation factor 1-α (TEF) sequences. Our data show that P. lilacinus is not related to Paecilomyces, represented by the well-known thermophilic and often pathogenic Paecilomyces variotii. The new genus name Purpureocillium is proposed for P. lilacinus and the new combination Purpureocillium lilacinum is made here. Furthermore, the examined Purpureocillium lilacinum isolated grouped in two clades based on ITS and partial TEF sequences. The ITS and TEF sequences of the Purpureocillium lilacinum isolates used for biocontrol of nematode pests are identical to those causing infections in (immunocompromised) humans. The use of high concentrations of Purpureocillium lilacinum spores for biocontrol poses a health risk in immunocompromised humans and more research is needed to determine the pathogenicity factors of Purpureocillium lilacinum.
The American Naturalist | 2009
Sandra B. Andersen; Sylvia Gerritsma; Kalsum M. Yusah; David Mayntz; Nigel L. Hywel-Jones; Johan Billen; Jacobus J. Boomsma; David P. Hughes
Specialized parasites are expected to express complex adaptations to their hosts. Manipulation of host behavior is such an adaptation. We studied the fungus Ophiocordyceps unilateralis, a locally specialized parasite of arboreal Camponotus leonardi ants. Ant‐infecting Ophiocordyceps are known to make hosts bite onto vegetation before killing them. We show that this represents a fine‐tuned fungal adaptation: an extended phenotype. Dead ants were found under leaves, attached by their mandibles, on the northern side of saplings ∼25 cm above the soil, where temperature and humidity conditions were optimal for fungal growth. Experimental relocation confirmed that parasite fitness was lower outside this manipulative zone. Host resources were rapidly colonized and further secured by extensive internal structuring. Nutritional composition analysis indicated that such structuring allows the parasite to produce a large fruiting body for spore production. Our findings suggest that the osmotrophic lifestyle of fungi may have facilitated novel exploitation strategies.
BMC Ecology | 2011
David P. Hughes; Sandra B. Andersen; Nigel L. Hywel-Jones; Winanda Himaman; Johan Billen; Jacobus J. Boomsma
BackgroundParasites that manipulate host behavior can provide prominent examples of extended phenotypes: parasite genomes controlling host behavior. Here we focus on one of the most dramatic examples of behavioral manipulation, the death grip of ants infected by Ophiocordyceps fungi. We studied the interaction between O. unilateralis s.l. and its host ant Camponotus leonardi in a Thai rainforest, where infected ants descend from their canopy nests down to understory vegetation to bite into abaxial leaf veins before dying. Host mortality is concentrated in patches (graveyards) where ants die on sapling leaves ca. 25 cm above the soil surface where conditions for parasite development are optimal. Here we address whether the sequence of ant behaviors leading to the final death grip can also be interpreted as parasite adaptations and describe some of the morphological changes inside the heads of infected workers that mediate the expression of the death grip phenotype.ResultsWe found that infected ants behave as zombies and display predictable stereotypical behaviors of random rather than directional walking, and of repeated convulsions that make them fall down and thus precludes returning to the canopy. Transitions from erratic wandering to death grips on a leaf vein were abrupt and synchronized around solar noon. We show that the mandibles of ants penetrate deeply into vein tissue and that this is accompanied by extensive atrophy of the mandibular muscles. This lock-jaw means the ant will remain attached to the leaf after death. We further present histological data to show that a high density of single celled stages of the parasite within the head capsule of dying ants are likely to be responsible for this muscular atrophy.ConclusionsExtended phenotypes in ants induced by fungal infections are a complex example of behavioral manipulation requiring coordinated changes of host behavior and morphology. Future work should address the genetic basis of such extended phenotypes.
IMA fungus | 2014
C. Alisha Quandt; Ryan M. Kepler; Walter Gams; João P. M. Araújo; Sayaka Ban; Harry C. Evans; David P. Hughes; Richard A. Humber; Nigel L. Hywel-Jones; Zengzhi Li; J. Jennifer Luangsa-ard; Stephen A. Rehner; Tatiana Sanjuan; Hiroki Sato; Bhushan Shrestha; Gi-Ho Sung; Yi-Jian Yao; Rasoul Zare; Joseph W. Spatafora
Ophiocordycipitaceae is a diverse family comprising ecologically, economically, medicinally, and culturally important fungi. The family was recognized due to the polyphyly of the genus Cordyceps and the broad diversity of the mostly arthropod-pathogenic lineages of Hypocreales. The other two cordyceps-like families, Cordycipitaceae and Clavicipitaceae, will be revised taxonomically elsewhere. Historically, many species were placed in Cordyceps, but other genera have been described in this family as well, including several based on anamorphic features. Currently there are 24 generic names in use across both asexual and sexual life stages for species of Ophiocordycipitaceae. To reflect changes in Art. 59 in the International Code of Nomenclature for algae, fungi, and plants (ICN), we propose to protect and to suppress names within Ophiocordycipitaceae, and to present taxonomic revisions in the genus Tolypocladium, based on rigorous and extensively sampled molecular phylogenetic analyses. When approaching this task, we considered the principles of priority, monophyly, minimizing taxonomic revisions, and the practical utility of these fungi within the wider biological research community.
Mycologia | 2004
J. Jennifer Luangsa-ard; Nigel L. Hywel-Jones; Robert A. Samson
Nuclear-encoded small-subunit ribosomal DNA was used to examine phylogenetic relationships in Paecilomyces sensu lato. Phylogenetic analysis of the 18S nr DNA demonstrates that Paecilomyces is polyphyletic across two subclasses, Sordariomycetidae and Eurotiomycetidae. The type species, Paecilomyces variotii, and thermophilic relatives belong in the order Eurotiales (Trichocomaceae), while mesophilic species related to Paecilomyces farinosus are in the order Hypocreales (Clavicipitaceae and Hypocreaceae). One species, Paecilomyces inflatus, had affinities for the order Sordariales. Within the Eurotiales, Paecilomyces is monophyletic. Within the Hypocreales, species of Paecilomyces are polyphyletic, although the data failed to fully resolve these relationships.
Fungal Biology | 2009
Desiree Johnson; Gi-Ho Sung; Nigel L. Hywel-Jones; J. Jennifer Luangsa-ard; Joseph F. Bischoff; Ryan M. Kepler; Joseph W. Spatafora
Torrubiella is a genus of arthropod-pathogenic fungi that primarily attacks spiders and scale insects. Based on the morphology of the perithecia, asci, and ascospores, it is classified in Clavicipitaceae s. lat. (Hypocreales), and is considered a close relative of Cordyceps s. 1., which was recently reclassified into three families (Clavicipitaceae s. str., Cordycipitaceae, Ophiocordycipitaceae) and four genera (Cordyceps s. str, Elaphocordyceps, Metacordyceps, and Ophiocordyceps). Torrubiella is distinguished morphologically from Cordyceps s. lat. mainly by the production of superficial perithecia and the absence of a well-developed stipitate stroma. To test and refine evolutionary hypotheses regarding the placement of Torrubiella and its relationship to Cordyceps s. lat., a multi-gene phylogeny was constructed by conducting ML and Bayesian analyses. The monophyly of Torrubiella was rejected by these analyses with species of the genus present in Clavicipitaceae, Cordycipitaceae, and Ophiocordycipitaceae, and often intermixed among species of Cordyceps s. lat. The morphological characters traditionally used to define the genus are, therefore, not phylogenetically informative, with the stipitate stromata being gained and/or lost several times among clavicipitaceous fungi. Two new genera (Conoideocrella, Orbiocrella) are proposed to accommodate two separate lineages of torrubielloid fungi in the Clavicipitaceae s. str. In addition, one species is reclassified in Cordyceps s. str. and three are reclassified in Ophiocordyceps. The phylogenetic importance of anamorphic genera, host affiliation, and stipitate stromata is discussed.
PLOS ONE | 2009
Maj-Britt Pontoppidan; Winanda Himaman; Nigel L. Hywel-Jones; Jacobus J. Boomsma; David P. Hughes
Parasites are likely to play an important role in structuring host populations. Many adaptively manipulate host behaviour, so that the extended phenotypes of these parasites and their distributions in space and time are potentially important ecological variables. The fungus Ophiocordyceps unilateralis, which is pan-tropical in distribution, causes infected worker ants to leave their nest and die under leaves in the understory of tropical rainforests. Working in a forest dynamic plot in Southern Thailand we mapped the occurrence of these dead ants by examining every leaf in 1,360 m2 of primary rainforest. We established that high density aggregations exist (up to 26 dead ants/m2), which we coined graveyards. We further established that graveyards are patchily distributed in a landscape with no or very few O. unilateralis-killed ants. At some, but not all, spatial scales of analysis the density of dead ants correlated with temperature, humidity and vegetation cover. Remarkably, having found 2243 dead ants inside graveyards we only found 2 live ants of the principal host, ant Camponotus leonardi, suggesting that foraging host ants actively avoid graveyards. We discovered that the principal host ant builds nests in high canopy and its trails only occasionally descend to the forest floor where infection occurs. We advance the hypothesis that rare descents may be a function of limited canopy access to tree crowns and that resource profitability of such trees is potentially traded off against the risk of losing workers due to infection when forest floor trails are the only access routes. Our work underscores the need for an integrative approach that recognises multiple facets of parasitism, such as their extended phenotypes.
Collaboration
Dive into the Nigel L. Hywel-Jones's collaboration.
Thailand National Science and Technology Development Agency
View shared research outputsThailand National Science and Technology Development Agency
View shared research outputs