Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nigel W. Arnell is active.

Publication


Featured researches published by Nigel W. Arnell.


Science | 2005

Ecosystem service supply and vulnerability to global change in Europe

Dagmar Schröter; Wolfgang Cramer; Rik Leemans; I. Colin Prentice; Miguel B. Araújo; Nigel W. Arnell; Alberte Bondeau; Harald Bugmann; Timothy R. Carter; Carlos Gracia; Anne C. de la Vega-Leinert; Markus Erhard; Frank Ewert; Margaret J. Glendining; Joanna Isobel House; Susanna Kankaanpää; Richard J.T. Klein; Sandra Lavorel; Marcus Lindner; Marc J. Metzger; Jeannette Meyer; Timothy D. Mitchell; Isabelle Reginster; Mark Rounsevell; Santi Sabaté; Stephen Sitch; Ben Smith; Jo Smith; Pete Smith; Martin T. Sykes

Global change will alter the supply of ecosystem services that are vital for human well-being. To investigate ecosystem service supply during the 21st century, we used a range of ecosystem models and scenarios of climate and land-use change to conduct a Europe-wide assessment. Large changes in climate and land use typically resulted in large changes in ecosystem service supply. Some of these trends may be positive (for example, increases in forest area and productivity) or offer opportunities (for example, “surplus land” for agricultural extensification and bioenergy production). However, many changes increase vulnerability as a result of a decreasing supply of ecosystem services (for example, declining soil fertility, declining water availability, increasing risk of forest fires), especially in the Mediterranean and mountain regions.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Multimodel assessment of water scarcity under climate change

Jacob Schewe; Jens Heinke; Dieter Gerten; Ingjerd Haddeland; Nigel W. Arnell; Douglas B. Clark; Rutger Dankers; Stephanie Eisner; B M Fekete; Felipe J. Colón-González; Simon N. Gosling; Hyungjun Kim; Xingcai Liu; Yoshimitsu Masaki; Felix T. Portmann; Yusuke Satoh; Tobias Stacke; Qiuhong Tang; Yoshihide Wada; Dominik Wisser; Torsten Albrecht; Katja Frieler; Franziska Piontek; Lila Warszawski; P. Kabat

Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (<500 m3 per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 °C, whereas indicators of very severe impacts increase unabated beyond 2 °C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.


Proceedings of the National Academy of Sciences of the United States of America | 2006

A climate-change risk analysis for world ecosystems

M. Scholze; W. Knorr; Nigel W. Arnell; I. C. Prentice

We quantify the risks of climate-induced changes in key ecosystem processes during the 21st century by forcing a dynamic global vegetation model with multiple scenarios from 16 climate models and mapping the proportions of model runs showing forest/nonforest shifts or exceedance of natural variability in wildfire frequency and freshwater supply. Our analysis does not assign probabilities to scenarios or weights to models. Instead, we consider distribution of outcomes within three sets of model runs grouped by the amount of global warming they simulate: <2°C (including simulations in which atmospheric composition is held constant, i.e., in which the only climate change is due to greenhouse gases already emitted), 2–3°C, and >3°C. High risk of forest loss is shown for Eurasia, eastern China, Canada, Central America, and Amazonia, with forest extensions into the Arctic and semiarid savannas; more frequent wildfire in Amazonia, the far north, and many semiarid regions; more runoff north of 50°N and in tropical Africa and northwestern South America; and less runoff in West Africa, Central America, southern Europe, and the eastern U.S. Substantially larger areas are affected for global warming >3°C than for <2°C; some features appear only at higher warming levels. A land carbon sink of ≈1 Pg of C per yr is simulated for the late 20th century, but for >3°C this sink converts to a carbon source during the 21st century (implying a positive climate feedback) in 44% of cases. The risks continue increasing over the following 200 years, even with atmospheric composition held constant.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2008

The implications of projected climate change for freshwater resources and their management

Zbigniew W. Kundzewicz; L.J. Mata; Nigel W. Arnell; Petra Döll; B. Jimenez; Kathleen A. Miller; Taikan Oki; Zekâi Sen; I. A. Shiklomanov

A review of the implications of climate change for freshwater resources, based on Chapter 4 of Working Group 2, IPCC.


Global Environmental Change-human and Policy Dimensions | 1999

The effect of climate change on hydrological regimes in Europe: a continental perspective

Nigel W. Arnell

Abstract This paper outlines the effects of climate change by the 2050s on hydrological regimes at the continental scale in Europe, at a spatial resolution of 0.5×0.5°. Hydrological regimes are simulated using a macro-scale hydrological model, operating at a daily time step, and four climate change scenarios are used. There are differences between the four scenarios, but each indicates a general reduction in annual runoff in southern Europe (south of around 50°N), and an increase in the north. In maritime areas there is little difference in the timing of flows, but the range through the year tends to increase with lower flows during summer. The most significant changes in flow regime, however, occur where snowfall becomes less important due to higher temperatures, and therefore both winter runoff increases and spring flow decreases: these changes occur across a large part of eastern Europe. In western maritime Europe low flows reduce, but further east minimum flows will increase as flows during the present low flow season – winter – rise. “Drought” was indexed as the maximum total deficit volume below the flow exceeded 95% of the time: this was found to increase in intensity across most of western Europe, but decrease in the east and north. The study attempted to quantify several sources of uncertainty, and showed that the effects of model uncertainty on the estimated change in runoff were generally small compared to the differences between scenarios and the assumed change in global temperature by 2050.


Journal of Hydrometeorology | 2011

Multimodel estimate of the global terrestrial water balance: setup and first results

Ingjerd Haddeland; Douglas B. Clark; Wietse Franssen; F. Ludwig; F. Voss; Nigel W. Arnell; N. Bertrand; M. J. Best; Sonja S. Folwell; Dieter Gerten; S. M. Gomes; Simon N. Gosling; Stefan Hagemann; Naota Hanasaki; Richard Harding; Jens Heinke; P. Kabat; Sujan Koirala; Taikan Oki; Jan Polcher; Tobias Stacke; Pedro Viterbo; Graham P. Weedon; Pat J.-F. Yeh

Six land surface models and five global hydrological models participate in a model intercomparison project [Water Model Intercomparison Project (WaterMIP)], which for the first time compares simulation results of these different classes of models in a consistent way. In this paper, the simulation setup is described and aspects of the multimodel global terrestrial water balance are presented. All models were run at 0.58 spatial resolution for the global land areas for a 15-yr period (1985–99) using a newly developed global meteorological dataset. Simulated global terrestrial evapotranspiration, excluding Greenland and Antarctica, ranges from 415 to 586 mm yr 21 (from 60 000 to 85 000 km 3 yr 21 ), and simulated runoff ranges from 290 to 457 mm yr 21 (from 42 000 to 66 000 km 3 yr 21 ). Both the mean and median runoff fractions for the land surface models are lower than those of the global hydrological models, although the range is wider. Significant simulation differences between land surface and global hydrological models are found to be caused by the snow scheme employed. The physically based energy balance approach used by land surface models generally results in lower snow water equivalent values than the conceptual degreeday approach used by global hydrological models. Some differences in simulated runoff and evapotranspiration are explained by model parameterizations, although the processes included and parameterizations used are not distinct to either land surface models or global hydrological models. The results show that differences between models are a major source of uncertainty. Climate change impact studies thus need to use not only multiple climate models but also some other measure of uncertainty (e.g., multiple impact


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2014

Flood risk and climate change: global and regional perspectives

Zbigniew W. Kundzewicz; Shinjiro Kanae; Sonia I. Seneviratne; John Handmer; Neville Nicholls; Pascal Peduzzi; R. Mechler; Laurens M. Bouwer; Nigel W. Arnell; Katharine J. Mach; Robert Muir-Wood; G. Robert Brakenridge; Wolfgang Kron; Gerardo Benito; Yasushi Honda; Kiyoshi Takahashi; Boris Sherstyukov

Abstract A holistic perspective on changing rainfall-driven flood risk is provided for the late 20th and early 21st centuries. Economic losses from floods have greatly increased, principally driven by the expanding exposure of assets at risk. It has not been possible to attribute rain-generated peak streamflow trends to anthropogenic climate change over the past several decades. Projected increases in the frequency and intensity of heavy rainfall, based on climate models, should contribute to increases in precipitation-generated local flooding (e.g. flash flooding and urban flooding). This article assesses the literature included in the IPCC SREX report and new literature published since, and includes an assessment of changes in flood risk in seven of the regions considered in the recent IPCC SREX report—Africa, Asia, Central and South America, Europe, North America, Oceania and Polar regions. Also considering newer publications, this article is consistent with the recent IPCC SREX assessment finding that the impacts of climate change on flood characteristics are highly sensitive to the detailed nature of those changes and that presently we have only low confidence1 in numerical projections of changes in flood magnitude or frequency resulting from climate change. Editor D. Koutsoyiannis Citation Kundzewicz, Z.W., et al., 2013. Flood risk and climate change: global and regional perspectives. Hydrological Sciences Journal, 59 (1), 1–28.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment

Christel Prudhomme; Ignazio Giuntoli; Emma L. Robinson; Douglas B. Clark; Nigel W. Arnell; Rutger Dankers; B M Fekete; Wietse Franssen; Dieter Gerten; Simon N. Gosling; Stefan Hagemann; David M. Hannah; Hyungjun Kim; Yoshimitsu Masaki; Yusuke Satoh; Tobias Stacke; Yoshihide Wada; Dominik Wisser

Significance Increasing concentrations of greenhouse gases in the atmosphere are widely expected to influence global climate over the coming century. The impact on drought is uncertain because of the complexity of the processes but can be estimated using outputs from an ensemble of global models (hydrological and climate models). Using an ensemble of 35 simulations, we show a likely increase in the global severity of drought by the end of 21st century, with regional hotspots including South America and Central and Western Europe in which the frequency of drought increases by more than 20%. The main source of uncertainty in the results comes from the hydrological models, with climate models contributing to a substantial but smaller amount of uncertainty. Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multimodel experiment including seven global impact models (GIMs) driven by bias-corrected climate from five global climate models under four representative concentration pathways (RCPs). Drought severity is defined as the fraction of land under drought conditions. Results show a likely increase in the global severity of hydrological drought at the end of the 21st century, with systematically greater increases for RCPs describing stronger radiative forcings. Under RCP8.5, droughts exceeding 40% of analyzed land area are projected by nearly half of the simulations. This increase in drought severity has a strong signal-to-noise ratio at the global scale, and Southern Europe, the Middle East, the Southeast United States, Chile, and South West Australia are identified as possible hotspots for future water security issues. The uncertainty due to GIMs is greater than that from global climate models, particularly if including a GIM that accounts for the dynamic response of plants to CO2 and climate, as this model simulates little or no increase in drought frequency. Our study demonstrates that different representations of terrestrial water-cycle processes in GIMs are responsible for a much larger uncertainty in the response of hydrological drought to climate change than previously thought. When assessing the impact of climate change on hydrology, it is therefore critical to consider a diverse range of GIMs to better capture the uncertainty.


Nature | 1999

Relative impacts of human-induced climate change and natural climate variability

Mike Hulme; Em Barrow; Nigel W. Arnell; Paula A. Harrison; Timothy C. Johns; Thomas E. Downing

Assessments of the regional impacts of human-induced climate change on a wide range of social and environmental systems are fundamental for determining the appropriate policy responses to climate change. Yet regional-scale impact assessments are fraught with difficulties, such as the uncertainties of regional climate-change prediction, the specification of appropriate environmental-response models, and the interpretation of impact results in the context of future socio-economic and technological change. The effects of such confounding factors on estimates of climate-change impacts have only been poorly explored. Here we use results from recent global climate simulations and two environmental response models, to consider systematically the effects of natural climate variability (30-year timescales) and future climate-change uncertainties on river runoff and agricultural potential in Europe. We find that, for some regions, the impacts of human-induced climate change by 2050 will be undetectable relative to those due to natural multi-decadal climate variability. If misleading assessments of—and inappropriate adaptation strategies to—climate-change impacts are to be avoided, future studies should consider the impacts of natural multi-decadal climate variability alongside those of human-induced climate change.


Journal of Hydrology | 1996

The effects of climate change due to global warming on river flows in Great Britain

Nigel W. Arnell; N.S. Reynard

Abstract Global warming due to an increasing concentration of greenhouse gases in the atmosphere will affect temperature and rainfall, and hence river flows and water resources. This paper presents results from an investigation into potential changes in river flows in 21 catchments in Great Britain, using a daily rainfall-runoff model and both equilibrium and transient climate change scenarios. Annual runoff was simulated to increase by 2050 by over 20% in the wettest scenarios and decline by over 20% in the driest scenarios — and different catchments respond differently to the same change scenario. Monthly flows change by a greater percentage than annual flows, and under all the scenarios considered there would be a greater concentration of flow in winter. Snowfall, and hence snowmelt, would be almost entirely eliminated. Progressive changes in river flows over the next few decades would be small compared with year-to-year variability, but would be noticeable on a decade-to-decade basis.

Collaboration


Dive into the Nigel W. Arnell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel Warren

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Hope

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge