Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nihal Ahmad is active.

Publication


Featured researches published by Nihal Ahmad.


The FASEB Journal | 2007

Dose translation from animal to human studies revisited

Shannon Reagan-Shaw; Minakshi Nihal; Nihal Ahmad

As new drugs are developed, it is essential to appropriately translate the drug dosage from one animal species to another. A misunderstanding appears to exist regarding the appropriate method for allomet‐ric dose translations, especially when starting new animal or clinical studies. The need for education regarding appropriate translation is evident from the media response regarding some recent studies where authors have shown that resveratrol, a compound found in grapes and red wine, improves the health and life span of mice. Immediately after the online publication of these papers, the scientific community and popular press voiced concerns regarding the relevance of the dose of resveratrol used by the authors. The animal dose should not be extrapolated to a human equivalent dose (HED) by a simple conversion based on body weight, as was reported. For the more appropriate conversion of drug doses from animal studies to human studies, we suggest using the body surface area (BSA) normalization method. BSA correlates well across several mammalian species with several parameters of biology, including oxygen utilization, caloric expenditure, basal metabolism, blood volume, circulating plasma proteins, and renal function. We advocate the use of BSA as a factor when converting a dose for translation from animals to humans, especially for phase I and phase II clinical trials.—Reagan‐Shaw S., Nihal, M., Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 22, 659–661 (2007)


Cancer Research | 2006

Targeting Multiple Signaling Pathways by Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate

Naghma Khan; Farrukh Afaq; Mohammad Saleem; Nihal Ahmad; Hasan Mukhtar

Cell signaling pathways, responsible for maintaining a balance between cell proliferation and death, have emerged as rational targets for the management of cancer. Emerging data amassed from various laboratories around the world suggests that green tea, particularly its major polyphenolic constituent (-)-epigallocatechin-3-gallate (EGCG), possesses remarkable cancer chemopreventive and therapeutic potential against various cancer sites in animal tumor bioassay systems and in some human epidemiologic studies. EGCG has been shown to modulate multiple signal transduction pathways in a fashion that controls the unwanted proliferation of cells, thereby imparting strong cancer chemopreventive as well as therapeutic effects. This review discusses the modulations of important signaling events by EGCG and their implications in cancer management.


The Prostate | 2000

Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma.

Sanjay Gupta; Mayank Srivastava; Nihal Ahmad; David G. Bostwick; Hasan Mukhtar

Aberrant or increased expression of cyclooxygenase (COX)‐2 has been implicated in the pathogenesis of many diseases including carcinogenesis. COX‐2 has been shown to be over‐expressed in some human cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols

Sanjay Gupta; Kedar Hastak; Nihal Ahmad; Jonathan S. Lewin; Hasan Mukhtar

Development of effective chemopreventive agents against prostate cancer (CaP) for humans requires conclusive evidence of their efficacy in animal models that closely emulates human disease. The autochthonous transgenic adenocarcinoma of the mouse prostate (TRAMP) model, which spontaneously develops metastatic CaP, is one such model that mimics progressive forms of human disease. Employing male TRAMP mice, we show that oral infusion of a polyphenolic fraction isolated from green tea (GTP) at a human achievable dose (equivalent to six cups of green tea per day) significantly inhibits CaP development and increases survival in these mice. In two separate experiments, the cumulative incidence of palpable tumors at 32 weeks of age in 20 untreated mice was 100% (20 of 20). In these mice, 95% (19 of 20), 65% (13 of 20), 40% (8 of 20), and 25% (5 of 20) of the animals exhibited distant site metastases to lymph nodes, lungs, liver, and bone, respectively. However, 0.1% GTP (wt/vol) provided as the sole source of drinking fluid to TRAMP mice from 8 to 32 weeks of age resulted in (i) significant delay in primary tumor incidence and tumor burden as assessed sequentially by MRI, (ii) significant decrease in prostate (64%) and genitourinary (GU) (72%) weight, (iii) significant inhibition in serum insulin-like growth factor-I and restoration of insulin-like growth factor binding protein-3 levels, and (iv) marked reduction in the protein expression of proliferating cell nuclear antigen (PCNA) in the prostate compared with water-fed TRAMP mice. The striking observation of this study was that GTP infusion resulted in almost complete inhibition of distant site metastases. Furthermore, GTP consumption caused significant apoptosis of CaP cells, which possibly resulted in reduced dissemination of cancer cells, thereby causing inhibition of prostate cancer development, progression, and metastasis of CaP to distant organ sites.


PLOS ONE | 2011

What Is New for an Old Molecule? Systematic Review and Recommendations on the Use of Resveratrol

Ole Vang; Nihal Ahmad; Clifton A. Baile; Joseph A. Baur; Karen Brown; Anna Csiszar; Dipak K. Das; Dominique Delmas; Carmem Gottfried; Hung Yun Lin; Qing Yong Ma; Partha Mukhopadhyay; Namasivayam Nalini; John M. Pezzuto; Tristan Richard; Yogeshwer Shukla; Young-Joon Surh; Thomas Szekeres; Tomasz Szkudelski; Thomas Walle; Joseph M. Wu

Background Resveratrol is a natural compound suggested to have beneficial health effects. However, people are consuming resveratrol for this reason without having the adequate scientific evidence for its effects in humans. Therefore, scientific valid recommendations concerning the human intake of resveratrol based on available published scientific data are necessary. Such recommendations were formulated after the Resveratrol 2010 conference, held in September 2010 in Helsingør, Denmark. Methodology Literature search in databases as PubMed and ISI Web of Science in combination with manual search was used to answer the following five questions: 1Can resveratrol be recommended in the prevention or treatment of human diseases?; 2Are there observed “side effects” caused by the intake of resveratrol in humans?; 3What is the relevant dose of resveratrol?; 4What valid data are available regarding an effect in various species of experimental animals?; 5Which relevant (overall) mechanisms of action of resveratrol have been documented? Conclusions/Significance The overall conclusion is that the published evidence is not sufficiently strong to justify a recommendation for the administration of resveratrol to humans, beyond the dose which can be obtained from dietary sources. On the other hand, animal data are promising in prevention of various cancer types, coronary heart diseases and diabetes which strongly indicate the need for human clinical trials. Finally, we suggest directions for future research in resveratrol regarding its mechanism of action and its safety and toxicology in human subjects.


Oncogene | 2003

Role of p53 and NF-κB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells

Kedar Hastak; Sanjay Gupta; Nihal Ahmad; Mukesh K. Agarwal; Munna L. Agarwal; Hasan Mukhtar

We have recently shown that oral consumption of green tea polyphenols inhibits prostate carcinogenesis in transgenic mouse model of prostate cancer and suggested that induction of apoptosis in prostate cancer cells is responsible for these effects. Much of the chemopreventive effects of green tea are attributed to its major polyphenolic constituent (−) epigallocatechin-3-gallate (EGCG). In the present study, we report that EGCG-induced apoptosis in human prostate carcinoma LNCaP cells is mediated via modulation of two related pathways: (a) stabilization of p53 by phosphorylation on critical serine residues and p14ARF-mediated downregulation of murine double minute 2(MDM2) protein, and (b) negative regulation of NF-κB activity, thereby decreasing the expression of the proapoptotic protein Bcl-2. EGCG-induced stabilization of p53 caused an upregulation in its transcriptional activity, thereby resulting in activation of its downstream targets p21/WAF1 and Bax. Thus, EGCG had a concurrent effect on two important transcription factors p53 and NF-κB, causing a change in the ratio of Bax/Bcl-2 in a manner that favors apoptosis. This altered expression of Bcl-2 family members triggered the activation of initiator capsases 9 and 8 followed by activation of effector caspase 3. Activation of the caspases was followed by poly (ADP-ribose) polymerase cleavage and induction of apoptosis. Taken together, the data indicate that EGCG induces apoptosis in human prostate carcinoma cells by shifting the balance between pro- and antiapoptotic proteins in favor of apoptosis.


Cancer Research | 2004

Oral Consumption of Green Tea Polyphenols Inhibits Insulin-Like Growth Factor-I–Induced Signaling in an Autochthonous Mouse Model of Prostate Cancer

Vaqar M. Adhami; Imtiaz A. Siddiqui; Nihal Ahmad; Sanjay Gupta; Hasan Mukhtar

We earlier demonstrated that oral infusion of green tea polyphenols inhibits development and progression of prostate cancer in transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Evidence indicates that elevated levels of IGF-I with concomitant lowering of IGF binding protein (IGFBP)-3 are associated with increased risk for prostate cancer development and progression. In this study, we examined the role of IGF/IGFBP-3 signaling and its downstream and other associated events during chemoprevention of prostate cancer by green tea polyphenols in TRAMP mice. Our data demonstrated an increase in the levels of IGF-I, phosphatidylinositol 3′-kinase, phosphorylated Akt (Thr-308), and extracellular signal-regulated kinase 1/2 with concomitant decrease in IGFBP-3 in dorso-lateral prostate of TRAMP mice during the course of cancer progression, i.e., as a function of age. Continuous green tea polyphenol infusion for 24 weeks to these mice resulted in substantial reduction in the levels of IGF-I and significant increase in the levels of IGFBP-3 in the dorso-lateral prostate. This modulation of IGF/IGFBP-3 was found to be associated with an inhibition of protein expression of phosphatidylinositol 3′-kinase, phosphorylated forms of Akt (Thr-308) and extracellular signal-regulated kinase 1/2. Furthermore, green tea polyphenol infusion resulted in marked inhibition of markers of angiogenesis and metastasis most notably vascular endothelial growth factor, urokinase plasminogen activator, and matrix metalloproteinases 2 and 9. Based on our data, we suggest that IGF-I/IGFBP-3 signaling pathway is a prime pathway for green tea polyphenol-mediated inhibition of prostate cancer that limits the progression of cancer through inhibition of angiogenesis and metastasis.


Cancer Research | 2009

Introducing Nanochemoprevention as a Novel Approach for Cancer Control: Proof of Principle with Green Tea Polyphenol Epigallocatechin-3-Gallate

Imtiaz A. Siddiqui; Vaqar Adhami; Dhruba J. Bharali; Bilal Bin Hafeez; Mohammad Asim; Sabih Islam Khwaja; Nihal Ahmad; Huadong Cui; Shaker A. Mousa; Hasan Mukhtar

Chemoprevention, especially through the use of naturally occurring phytochemicals capable of impeding the process of one or more steps of carcinogenesis process, is a promising approach for cancer management. Despite promising results in preclinical settings, its applicability to humans has met with limited success largely due to inefficient systemic delivery and bioavailability of promising chemopreventive agents. Here, we introduce the concept of nanochemoprevention, which uses nanotechnology for enhancing the outcome of chemoprevention. We encapsulated green tea polyphenol epigallocatechin-3-gallate (EGCG) in polylactic acid-polyethylene glycol nanoparticles and observed that encapsulated EGCG retains its biological effectiveness with over 10-fold dose advantage for exerting its proapoptotic and angiogenesis inhibitory effects, critically important determinants of chemopreventive effects of EGCG in both in vitro and in vivo systems. Thus, this study could serve as a basis for the use of nanoparticle-mediated delivery to enhance bioavailability and limit any unwanted toxicity of chemopreventive agents, such as EGCG.


Oncogene | 2003

Inhibition of ultraviolet B-mediated activation of nuclear factor κB in normal human epidermal keratinocytes by green tea Constituent (-)-epigallocatechin-3-gallate

Farrukh Afaq; Vaqar M. Adhami; Nihal Ahmad; Hasan Mukhtar

Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, possesses significant anti-inflammatory and cancer chemopreventive properties. Studies have shown the photochemopreventive effects of green tea and EGCG in cell culture, animal models, and human skin. The molecular mechanism(s) of photochemopreventive effects of EGCG are incompletely understood. We recently showed that EGCG treatment of the normal human epidermal keratinocytes (NHEK) inhibits ultraviolet (UV)B-mediated activation of the mitogen-activated protein kinase (MAPK) pathway. In this study, we evaluated the effect of EGCG on UVB-mediated modulation of the nuclear factor kappa B (NF-κB) pathway, which is known to play a critical role in a variety of physiological functions and is involved in inflammation and development of cancer. Immunoblot analysis demonstrated that the treatment of NHEK with EGCG (10–40 μM) for 24 h resulted in a significant inhibition of UVB (40 mJ/cm2)-mediated degradation and phosphorylation of IκBα and activation of IKKα, in a dose-dependent manner. UVB-mediated degradation and phosphorylation of IκBα and activation of IKKα was also observed in a time-dependent protocol (15 and 30 min, 1, 2, 3, 6, 12 h post-UVB exposure). Employing immunoblot analysis, enzyme-linked immunosorbent assay, and gel shift assay, we demonstrate that EGCG treatment of the cells resulted in a significant dose- and time-dependent inhibition of UVB-mediated activation and nuclear translocation of a NF-κB/p65. Our data suggest that EGCG protects against the adverse effects of UV radiation via modulations in NF-κB pathway, and provide a molecular basis for the photochemopreventive effect of EGCG.


Journal of Nutrition | 2003

Molecular Targets for Green Tea in Prostate Cancer Prevention

Vaqar M. Adhami; Nihal Ahmad; Hasan Mukhtar

Prostate cancer (PCa) is the most frequently diagnosed malignancy and the second leading cause of cancer-related deaths in American males. For these reasons, it is necessary to intensify our efforts for better understanding and development of novel treatment and chemopreventive approaches for this disease. In recent years, green tea has gained considerable attention as an agent that could reduce the risk of several cancer types. The cancer-chemopreventive effects of green tea appear to be mediated by the polyphenolic constituents present therein. Based on geographical observations that suggest that the incidence of PCa is lower in Japanese and Chinese populations that consume green tea on a regular basis, we hypothesized that green tea and/or its constituents could be effective for chemoprevention of PCa. To investigate this hypothesis, we initiated a program for the chemoprevention of PCa by green tea. In cell-culture systems that employ human PCa cells DU145 (androgen insensitive) and LNCaP (androgen sensitive), we found that the major polyphenolic constituent (-)-epigallocatechin-3-gallate (EGCG) of green tea induces 1) apoptosis, 2) cell-growth inhibition, and 3) cyclin kinase inhibitor WAF-1/p21-mediated cell-cycle dysregulation. More recently, using a cDNA microarray, we found that EGCG treatment of LNCaP cells results in 1) induction of genes that functionally exhibit growth-inhibitory effects, and 2) repression of genes that belong to the G-protein signaling network. In animal studies that employ a transgenic adenocarcinoma of the mouse prostate (TRAMP), which is a model that mimics progressive forms of human prostatic disease, we observed that oral infusion of a polyphenolic fraction isolated from green tea (GTP) at a human achievable dose (equivalent to 6 cups of green tea/d) significantly inhibits PCa development and metastasis. We extended these studies and more recently observed increased expression of genes related to angiogenesis such as vascular endothelial growth factor (VEGF) and those related to metastasis such as matrix metalloproteinases (MMP)-2 and MMP-9 in prostate cancer of TRAMP mice. Oral feeding of GTP as the sole source of drinking fluid to TRAMP mice results in significant inhibition of VEGF, MMP-2 and MMP-9. These data suggest that there are multiple targets for PCa chemoprevention by green tea and highlight the need for further studies to identify novel pathways that may be modulated by green tea or its polyphenolic constituents that could be further exploited for prevention and/or treatment of PCa.

Collaboration


Dive into the Nihal Ahmad's collaboration.

Top Co-Authors

Avatar

Hasan Mukhtar

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Chandra K. Singh

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Minakshi Nihal

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Mary A. Ndiaye

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Shannon Reagan-Shaw

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Sanjay Gupta

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Vaqar M. Adhami

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Imtiaz A. Siddiqui

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farrukh Afaq

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge